Constrained Discounted Markov Decision Chains

1991 ◽  
Vol 5 (4) ◽  
pp. 463-475 ◽  
Author(s):  
Linn I. Sennott

A Markov decision chain with countable state space incurs two types of costs: an operating cost and a holding cost. The objective is to minimize the expected discounted operating cost, subject to a constraint on the expected discounted holding cost. The existence of an optimal randomized simple policy is proved. This is a policy that randomizes between two stationary policies, that differ in at most one state. Several examples from the control of discrete time queueing systems are discussed.

1987 ◽  
Vol 24 (02) ◽  
pp. 347-354 ◽  
Author(s):  
Guy Fayolle ◽  
Rudolph Iasnogorodski

In this paper, we present some simple new criteria for the non-ergodicity of a stochastic process (Yn ), n ≧ 0 in discrete time, when either the upward or downward jumps are majorized by i.i.d. random variables. This situation is encountered in many practical situations, where the (Yn ) are functionals of some Markov chain with countable state space. An application to the exponential back-off protocol is described.


1987 ◽  
Vol 24 (2) ◽  
pp. 347-354 ◽  
Author(s):  
Guy Fayolle ◽  
Rudolph Iasnogorodski

In this paper, we present some simple new criteria for the non-ergodicity of a stochastic process (Yn), n ≧ 0 in discrete time, when either the upward or downward jumps are majorized by i.i.d. random variables. This situation is encountered in many practical situations, where the (Yn) are functionals of some Markov chain with countable state space. An application to the exponential back-off protocol is described.


2017 ◽  
Vol 32 (4) ◽  
pp. 626-639 ◽  
Author(s):  
Zhiyan Shi ◽  
Pingping Zhong ◽  
Yan Fan

In this paper, we give the definition of tree-indexed Markov chains in random environment with countable state space, and then study the realization of Markov chain indexed by a tree in random environment. Finally, we prove the strong law of large numbers and Shannon–McMillan theorem for Markov chains indexed by a Cayley tree in a Markovian environment with countable state space.


1997 ◽  
Vol 29 (01) ◽  
pp. 114-137
Author(s):  
Linn I. Sennott

This paper studies the expected average cost control problem for discrete-time Markov decision processes with denumerably infinite state spaces. A sequence of finite state space truncations is defined such that the average costs and average optimal policies in the sequence converge to the optimal average cost and an optimal policy in the original process. The theory is illustrated with several examples from the control of discrete-time queueing systems. Numerical results are discussed.


Sign in / Sign up

Export Citation Format

Share Document