THE MX/D/c BATCH ARRIVAL QUEUE

2005 ◽  
Vol 19 (3) ◽  
pp. 345-349 ◽  
Author(s):  
Geert Jan Franx

A surprisingly simple and explicit expression for the waiting time distribution of the MX/D/c batch arrival queue is derived by a full probabilistic analysis, requiring neither generating functions nor Laplace transforms. Unlike the solutions known so far, this expression presents no numerical complications, not even for high traffic intensities.

1991 ◽  
Vol 28 (4) ◽  
pp. 873-885 ◽  
Author(s):  
Dimitris J. Bertsimas ◽  
Julian Keilson ◽  
Daisuke Nakazato ◽  
Hongtao Zhang

In this paper we find the waiting time distribution in the transient domain and the busy period distribution of the GI G/1 queue. We formulate the problem as a two-dimensional Lindley process and then transform it to a Hilbert factorization problem. We achieve the solution of the factorization problem for the GI/R/1, R/G/1 queues, where R is the class of distributions with rational Laplace transforms. We obtain simple closed-form expressions for the Laplace transforms of the waiting time distribution and the busy period distribution. Furthermore, we find closed-form formulae for the first two moments of the distributions involved.


1991 ◽  
Vol 28 (04) ◽  
pp. 873-885 ◽  
Author(s):  
Dimitris J. Bertsimas ◽  
Julian Keilson ◽  
Daisuke Nakazato ◽  
Hongtao Zhang

In this paper we find the waiting time distribution in the transient domain and the busy period distribution of the GI G/1 queue. We formulate the problem as a two-dimensional Lindley process and then transform it to a Hilbert factorization problem. We achieve the solution of the factorization problem for the GI/R/1, R/G/1 queues, where R is the class of distributions with rational Laplace transforms. We obtain simple closed-form expressions for the Laplace transforms of the waiting time distribution and the busy period distribution. Furthermore, we find closed-form formulae for the first two moments of the distributions involved.


1995 ◽  
Vol 9 (2) ◽  
pp. 239-254 ◽  
Author(s):  
S. C. Borst

We study a globally gated polling system with a dormant server, which makes a halt at its home base when there are no customers present in the system. We derive an explicit expression for the cycle time distribution as well as for the waiting-time distribution at each of the queues. As a justification of the dormant server policy, we show the waiting time at each of the queues to be smaller (in the increasing-convex-ordering sense) than in the ordinary nondormant server case.


1980 ◽  
Vol 17 (3) ◽  
pp. 814-821 ◽  
Author(s):  
J. G. Shanthikumar

Some properties of the number of up- and downcrossings over level u, in a special case of regenerative processes are discussed. Two basic relations between the density functions and the expected number of upcrossings of this process are derived. Using these reults, two examples of controlled M/G/1 queueing systems are solved. Simple relations are derived for the waiting time distribution conditioned on the phase of control encountered by an arriving customer. The Laplace-Stieltjes transform of the distribution function of the waiting time of an arbitrary customer is also derived for each of these two examples.


2021 ◽  
Author(s):  
Yosia I Nurhan ◽  
Jay Robert Johnson ◽  
Jonathan R Homan ◽  
Simon Wing

2012 ◽  
Vol 26 (23) ◽  
pp. 1250151 ◽  
Author(s):  
KWOK SAU FA

In this paper, we model the tick-by-tick dynamics of markets by using the continuous-time random walk (CTRW) model. We employ a sum of products of power law and stretched exponential functions for the waiting time probability distribution function; this function can fit well the waiting time distribution for BUND futures traded at LIFFE in 1997.


2012 ◽  
Vol 45 (6) ◽  
pp. 457-462 ◽  
Author(s):  
Chuan Shi ◽  
Stanley B. Gershwin

Sign in / Sign up

Export Citation Format

Share Document