A CUMULATIVE RESIDUAL INACCURACY MEASURE FOR COHERENT SYSTEMS AT COMPONENT LEVEL AND UNDER NONHOMOGENEOUS POISSON PROCESSES

Author(s):  
Vanderlei da Costa Bueno ◽  
Narayanaswamy Balakrishnan

Inaccuracy and information measures based on cumulative residual entropy are quite useful and have attracted considerable attention in many fields including reliability theory. Using a point process martingale approach and a compensator version of Kumar and Taneja's generalized inaccuracy measure of two nonnegative continuous random variables, we define here an inaccuracy measure between two coherent systems when the lifetimes of their common components are observed. We then extend the results to the situation when the components in the systems are subject to failure according to a double stochastic Poisson process.

2018 ◽  
Vol 34 (1) ◽  
pp. 92-111 ◽  
Author(s):  
Camilla Calì ◽  
Maria Longobardi ◽  
Jorge Navarro

AbstractThe Shannon entropy based on the probability density function is a key information measure with applications in different areas. Some alternative information measures have been proposed in the literature. Two relevant ones are the cumulative residual entropy (based on the survival function) and the cumulative past entropy (based on the distribution function). Recently, some extensions of these measures have been proposed. Here, we obtain some properties for the generalized cumulative past entropy. In particular, we prove that it determines the underlying distribution. We also study this measure in coherent systems and a closely related generalized past cumulative Kerridge inaccuracy measure.


2017 ◽  
Vol 54 (2) ◽  
pp. 379-393 ◽  
Author(s):  
A. Toomaj ◽  
S. M. Sunoj ◽  
J. Navarro

Abstract Recently, Rao et al. (2004) introduced an alternative measure of uncertainty known as the cumulative residual entropy (CRE). It is based on the survival (reliability) function F̅ instead of the probability density function f used in classical Shannon entropy. In reliability based system design, the performance characteristics of the coherent systems are of great importance. Accordingly, in this paper, we study the CRE for coherent and mixed systems when the component lifetimes are identically distributed. Bounds for the CRE of the system lifetime are obtained. We use these results to propose a measure to study if a system is close to series and parallel systems of the same size. Our results suggest that the CRE can be viewed as an alternative entropy (dispersion) measure to classical Shannon entropy.


2020 ◽  
Vol 2 (4) ◽  
pp. 560-578
Author(s):  
Saúl J. C. Salazar ◽  
Humberto G. Laguna ◽  
Robin P. Sagar

A definition of three-variable cumulative residual entropy is introduced, and then used to obtain expressions for higher order or triple-wise correlation measures, that are based on cumulative residual densities. These information measures are calculated in continuous variable quantum systems comprised of three oscillators, and their behaviour compared to the analogous measures from Shannon information theory. There is an overall consistency in the behaviour of the newly introduced measures as compared to the Shannon ones. There are, however, differences in interpretation, in the case of three uncoupled oscillators, where the correlation is due to wave function symmetry. In interacting systems, the cumulative based measures are shown in order to detect salient features, which are also present in the Shannon based ones.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
N. Unnikrishnan Nair ◽  
B. Vineshkumar

Abstract Dynamic cumulative residual entropy is a new addition to the class of information measures. In the present paper, we study its relationship with excess wealth transform and derive some identities connecting the two using the quantile-based approach. Some theoretical results that have applications to infer ageing properties and risk measures are presented. These are used as tools to analyse real life data.


2021 ◽  
pp. 2150055
Author(s):  
Qin Zhou ◽  
Pengjian Shang

Cumulative residual entropy (CRE) has been suggested as a new measure to quantify uncertainty of nonlinear time series signals. Combined with permutation entropy and Rényi entropy, we introduce a generalized measure of CRE at multiple scales, namely generalized cumulative residual entropy (GCRE), and further propose a modification of GCRE procedure by the weighting scheme — weighted generalized cumulative residual entropy (WGCRE). The GCRE and WGCRE methods are performed on the synthetic series to study properties of parameters and verify the validity of measuring complexity of the series. After that, the GCRE and WGCRE methods are applied to the US, European and Chinese stock markets. Through data analysis and statistics comparison, the proposed methods can effectively distinguish stock markets with different characteristics.


Entropy ◽  
2020 ◽  
Vol 22 (6) ◽  
pp. 709 ◽  
Author(s):  
Abdolsaeed Toomaj ◽  
Antonio Di Crescenzo

The generalized cumulative residual entropy is a recently defined dispersion measure. In this paper, we obtain some further results for such a measure, in relation to the generalized cumulative residual entropy and the variance of random lifetimes. We show that it has an intimate connection with the non-homogeneous Poisson process. We also get new expressions, bounds and stochastic comparisons involving such measures. Moreover, the dynamic version of the mentioned notions is studied through the residual lifetimes and suitable aging notions. In this framework we achieve some findings of interest in reliability theory, such as a characterization for the exponential distribution, various results on k-out-of-n systems, and a connection to the excess wealth order. We also obtain similar results for the generalized cumulative entropy, which is a dual measure to the generalized cumulative residual entropy.


Sign in / Sign up

Export Citation Format

Share Document