Mutual Magnetic Interactions and Oscillator Strengths in the First Spectrum of Oxygen

Author(s):  
R. H. Garstang

ABSTRACTThe effects of the spin-other-orbit and spin-spin interactions on the energy levels of the 2p3 3s configuration of oxygen are investigated, and they are found to make an appreciable contribution to the fine structure. The interactions are shown to have a negligible effect on the strengths of all the stronger lines of the 2p4-2p3 3s array, and the more important of the weaker transitions are likewise little affected. The value to be adopted for the radial integral involved in the absolute oscillator strengths is discussed, and numerical values of the oscillator strengths are given.

Pramana ◽  
2005 ◽  
Vol 65 (1) ◽  
pp. 75-84 ◽  
Author(s):  
Man Mohan ◽  
Avnindra K. Singh ◽  
Alok K. S. Jha ◽  
Narendra Singh

2009 ◽  
Vol 87 (8) ◽  
pp. 895-907 ◽  
Author(s):  
G. P. Gupta ◽  
A. Z. Msezane

We have performed large-scale CIV3 calculations of excitation energies from the ground state for 97 fine-structure levels as well as of oscillator strengths and radiative decay rates for all electric-dipole-allowed and intercombination transitions among the fine-structure levels of the terms belonging to the (1s22s22p6)3s23p, 3s3p2, 3s23d, 3p3, 3s3p3d, 3p23d, 3s3d2, 3s24s, 3s24p, 3s24d, 3s24f, and 3s3p4s configurations of Cu XVII. These states are represented by very extensive configuration-interaction (CI) wave functions obtained with the CIV3 (Configuration-Interaction Version 3) computer code of Hibbert. The important relativistic effects in intermediate coupling are incorporated by means of the Breit–Pauli Hamiltonian, which consists of the nonrelativistic term plus the one-body mass correction, Darwin term, and spin–orbit, spin–other-orbit, and spin–spin operators. To keep our calculated energy splittings as close as possible to the experimental values (wherever available), we have made small adjustments to the diagonal elements of the Hamiltonian matrices. Our calculated excitation energies, including their ordering, are in excellent agreement with the available experimental results. From our radiative decay rates we have also calculated radiative lifetimes of some fine-structure levels. The mixing among several fine-structure levels is found to be so strong that the correct identification of these levels becomes very difficult. We believe that our extensive calculations will be useful to experimentalists in identifying the fine-structure levels in their future work. In this calculation we also predict new data for several fine-structure levels where no other theoretical and (or) experimental results are available.


2016 ◽  
Vol 94 (10) ◽  
pp. 1054-1060 ◽  
Author(s):  
Yan Sun ◽  
CuiCui Sang ◽  
KaiKai Li ◽  
XinYu Qian ◽  
Feng Hu ◽  
...  

Theoretical calculations are reported for energy levels and transition probabilities of the K-shell excited sextet series 6Se,o(m) and 6Po,e(m) (m = 1–7) for the astrophysically important element sulfur. Energy levels, fine structure splittings, and transition parameters of the high-lying sextet series 6Se,o(m) and 6Po,e(m) (m = 1–7) in boron-like sulfur ion are calculated with the multi-configuration Rayleigh–Ritz variation method. To obtain the accurate energy level, the relativistic corrections and mass polarization effect are included by using the first-order perturbation theory. Configuration structures of these sextet series are assigned according to the energies, percentage contributions of basis states to the eigenvector, relativistic effect corrections, and verification of fine structure splittings. The oscillator strengths, transition probabilities, and wavelengths of electric-dipole transitions between 6So,e(m) and 6Pe,o(m) (m = 1–7) states are also systematically calculated and discussed.


Sign in / Sign up

Export Citation Format

Share Document