oscillator strengths
Recently Published Documents


TOTAL DOCUMENTS

2385
(FIVE YEARS 154)

H-INDEX

84
(FIVE YEARS 5)

Author(s):  
Astrid S. Tarleton ◽  
Jorge C. Garcia-Alvarez ◽  
Anah Wynn ◽  
Cade M. Awbrey ◽  
Tomas P. Roberts ◽  
...  

Author(s):  
Noboru Watanabe ◽  
Masahiko Takahashi

Abstract We report a theoretical study of electronic excitation in CH3Cl and CF3Cl by electron impact. Momentum-transfer-dependent generalized oscillator strengths (GOSs) are calculated for transitions to low-lying excited singlet-states at the equation-of-motion coupled-cluster singles and doubles level. The influence of molecular vibration is taken into account in the calculation. The theoretical results show reasonable overall agreement with experimental data reported in the literature. The shapes of the GOS profiles reveal that the 1 1E state of CH3Cl has a valence-Rydberg mixed nature, while that of CF3Cl is of a predominant C-Cl antibonding character. A comparison with the experimental GOSs of CH3Cl provides unambiguous evidence that the 3pe state is lower in energy than the 3pa1 state. Optical oscillator strengths are also calculated and comparison is made with available experimental and other theoretical results.


2022 ◽  
Author(s):  
Nicolaj Kofod ◽  
Patrick Nawrocki ◽  
Thomas Just Sørensen

Lanthanide luminescence has been treated separate from molecular photophysics, although the underlying phenomena are the same. As the optical transitions observed in the trivalent lanthanide ions are forbidden, they do belong to the group that molecular photophysics have yet to conquer, yet the experimental descriptors remains valid. Determining these have proven challenging as full control/knowledge of sample composition is a prerequisite. This has been achieved, and here the luminescence quantum yields (ϕlum), luminescence lifetimes (τobs), oscillator strengths (f ), and the rates of non-radiative (knr) and radiative (kr ≡ A) deactivation of [Eu(H2O)9]3+ was determined for the trigonal tricapped prismatic (TTP) coordination geometry. Further, it was shown that instead of a full photophysical characterization, it is possible to relate changes in transition probabilities to the relative parameter Arel, which does not require reference data. While Arel does not afford comparisons between experiments, it resolves emission intensity changes due to emitter properties—changes in A—from intensity changes due to environmental effects—changes in knr, and differences in the number of photons absorbed. When working with fluorescence this may seem trivial, when working with lanthanide luminescence it is not.


2021 ◽  
pp. 134-142
Author(s):  
O. Khetselius ◽  
A. Mykhailov

The spectral wavelengths and oscillator strengths for 1s22s (2S1/2) → 1s23p (2P1/2) transitions in the Li-like multicharged ions with the nuclear charge Z=28,30 are calculated on the basis of the combined relativistic energy approach and relativistic many-body perturbation theory with the zeroth order optimized Dirac-Kohn-Sham one-particle approximation  and gauge invariance principle performance. The comparison of the obtained results with available theoretical and experimental (compilated) data is performed. The important point is linked with an accurate accounting for the complex exchange-correlation (polarization) effect contributions and using the optimized one-quasiparticle representation in the relativistic many-body perturbation theory zeroth order that significantly provides a physically reasonable agreement between theory and precise experiment.


2021 ◽  
Author(s):  
Astrid Tarleton ◽  
Jorge Garcia-Alvarez ◽  
Anah Wynn ◽  
Cade Awbrey ◽  
Tomas Roberts ◽  
...  

Excited-state quantum chemical calculations typically report excitation energies and oscillator strengths, ƒ, for each electronic transition. On the other hand, UV-visible spectrophotometric experiments report energy-dependent molar extinction/attenuation coefficients, ε(v), that determine the absorption band line shapes. ε(v) and ƒ are related, but this relation is complicated by various broadening and solvation effects. We fit and integrated experimental UV-visible spectra to obtain ƒexp values for absorption bands and estimated the uncertainty in the fitting. We derived 164 ƒexp values from 100 organic molecules ranging in size from 6-34 atoms. The corresponding computed oscillator strengths (ƒcomp) were obtained with time-dependent density functional theory and a polarizable continuum solvent model. By expressing experimental and computed absorption strengths using a common quantity, we directly compared ƒcomp and ƒexp. While ƒcomp and ƒexp are well correlated (linear regression R2=0. 921), ƒcomp in most cases significantly overestimates ƒexp (regression slope=1.34). The agreement between absolute ƒcomp and ƒexp values was substantially improved by accounting for a solvent refractive index factor, as suggested in some derivations in the literature. The 100 digitized UV-visible spectra are included as plain text files in the supporting information to aid in benchmarking computational or machine-learning approaches that aim to simulate realistic UV-visible absorption spectra.


2021 ◽  
Author(s):  
Bao-Ling Shi ◽  
Yi Qin ◽  
Xiang-Fu Li ◽  
Bang-Lin Deng ◽  
Gang Jiang ◽  
...  

Abstract Atomic data of highly charged ions (HCIs) offer an attractive means for plasma diagnostic and stars identification, and the investigations on atomic data are highly desirable. Herein, based on the fully relativistic multi-configuration Dirac-Hartree-Fock (MCDHF) method, we have performed calculations of the fine structure energy levels, wavelengths, transition rates, oscillator strengths, and line strengths for the lowest 21 states of 3p63d8 - 3p53d9 electric dipole (E1) transitions configurations in Fe-like ions (Z = 57, 60, 62, 64, 65). The correlation effects of valence-valence (VV) and core-valence (CV) electrons were systematically considered. In addition, we have taken into account transverse-photon (Breit) interaction and quantum electrodynamics (QED) corrections to treat accurately the atomic state wave functions in the final relativistic configuration interaction (RCI) calculations. Our calculated energy levels and transition wavelengths are in excellent agreement with the available experimental and theoretical results. Most importantly, we predicted some new transition parameters that have not yet been reported. These data would further provide critical insights into better analyzing the physical processes of various astrophysical plasmas.


2021 ◽  
Author(s):  
Qiang Sun ◽  
Ya-Wei Liu ◽  
Yuan-Chen Xu ◽  
Li-Han Wang ◽  
Tian-Jun Li ◽  
...  

Abstract The oscillator strengths of the valence-shell excitations of C2H2 are extremely important for testing theoretical models and studying interstellar gases. In this study, the high-resolution inelastic x-ray scattering (IXS) method is adopted to determine the generalized oscillator strengths (GOSs) of the valence-shell excitations of C2H2 at a photon energy of 10 keV. The GOSs are extrapolated to their zero limit to obtain the corresponding optical oscillator strengths (OOSs). Through taking a completely different experimental method of the IXS, the present results offer the high energy limit for electron collision to satisfy the first Born approximation (FBA) and cross-check the previous experimental and theoretical results independently. The comparisons indicate that an electron collision energy of 1500 eV is not enough for C2H2 to satisfy the FBA for the large squared momentum transfer, and the line saturation effect limits the accuracy of the OOSs measured by the photoabsorption method.


Sign in / Sign up

Export Citation Format

Share Document