On Certain Classes of Locally Soluble Groups

1962 ◽  
Vol 58 (2) ◽  
pp. 185-195
Author(s):  
J. E. Roseblade

A group G is called locally soluble if every finitely generated subgroup of G is soluble. Terms like ‘locally nilpotent’ and ‘locally finite’ are defined similarly.

Author(s):  
D. H. McLain ◽  
P. Hall

1. If P is any property of groups, then we say that a group G is ‘locally P’ if every finitely generated subgroup of G satisfies P. In this paper we shall be chiefly concerned with the case when P is the property of being nilpotent, and will examine some properties of nilpotent groups which also hold for locally nilpotent groups. Examples of locally nilpotent groups are the locally finite p-groups (groups such that every finite subset is contained in a finite group of order a power of the prime p); indeed, every periodic locally nilpotent group is the direct product of locally finite p-groups.


2018 ◽  
Vol 21 (3) ◽  
pp. 511-530
Author(s):  
Jonathan A. Hillman

Abstract We show that if π is the fundamental group of a 4-dimensional infrasolvmanifold then {-2\leq\mathrm{def}(\pi)\leq 0} , and give examples realizing each value allowed by our constraints, for each possible value of the rank of {\pi/\pi^{\prime}} . We also consider the abstract commensurators of such groups. Finally, we show that if G is a finitely generated group, the kernel of the natural homomorphism from G to its abstract commensurator {\mathrm{Comm}(G)} is locally nilpotent by locally finite, and is finite if {\mathrm{def}(G)>1} .


2001 ◽  
Vol 70 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Pavel Shumyatsky

AbstractWe show that if G is a finitely generated profinite group such that [x1, x2, …, xk] is Engel for any x1, x2, …, xk ∈ G, then γ(G) is locally nilpotent, and if [x1, x2, …, xk] has finite order for any x1, x2, …, xk ∈ G then, under some additional assumptions, γk(G) is locally finite.


2013 ◽  
Vol 11 (12) ◽  
Author(s):  
Sergio Camp-Mora

AbstractA subgroup H of a group G is called ascendant-by-finite in G if there exists a subgroup K of H such that K is ascendant in G and the index of K in H is finite. It is proved that a locally finite group with every subgroup ascendant-by-finite is locally nilpotent-by-finite. As a consequence, it is shown that the Gruenberg radical has finite index in the whole group.


2017 ◽  
Vol 20 (4) ◽  
Author(s):  
Anna Giordano Bruno ◽  
Pablo Spiga

AbstractWe study the growth of group endomorphisms, a generalization of the classical notion of growth of finitely generated groups, which is strictly related to algebraic entropy. We prove that the inner automorphisms of a group have the same growth type and the same algebraic entropy as the identity automorphism. Moreover, we show that endomorphisms of locally finite groups cannot have intermediate growth. We also find an example showing that the Addition Theorem for algebraic entropy does not hold for endomorphisms of arbitrary groups.


Author(s):  
Jayalakshmi ◽  
S. Madhavi Latha

Some properties of the right nucleus in generalized right alternative rings have been presented in this paper. In a generalized right alternative ring R which is finitely generated or free of locally nilpotent ideals, the right nucleus Nr equals the center C. Also, if R is prime and Nr ¹ C, then the associator ideal of R is locally nilpotent. Seong Nam [5] studied the properties of the right nucleus in right alternative algebra. He showed that if R is a prime right alternative algebra of char. ≠ 2 and Right nucleus Nr is not equal to the center C, then the associator ideal of R is locally nilpotent. But the problem arises when it come with the study of generalized right alternative ring as the ring dose not absorb the right alternative identity. In this paper we consider our ring to be generalized right alternative ring and try to prove the results of Seong Nam [5]. At the end of this paper we give an example to show that the generalized right alternative ring is not right alternative.


2013 ◽  
Vol 41 (5) ◽  
pp. 1790-1799
Author(s):  
Tara Brough ◽  
Derek F. Holt

1966 ◽  
Vol 9 (2) ◽  
pp. 197-200 ◽  
Author(s):  
W. A. McWorter

An outstanding unsolved problem in the theory of rings is the existence or non-existence of a simple nil ring. Such a ring cannot be locally nilpotent as is well known [ 5 ]. Hence, if a simple nil ring were to exist, it would follow that there exists a finitely generated nil ring which is not nilpotent. This seemed an unlikely situation until the appearance of Golod's paper [ 1 ] where a finitely generated, non-nilpotent ring is constructed for any d ≥ 2 generators over any field.


2019 ◽  
Vol 19 (05) ◽  
pp. 2050095
Author(s):  
Vesselin Drensky ◽  
Şehmus Fındık

Let [Formula: see text] be the polynomial algebra in [Formula: see text] variables over a field [Formula: see text] of characteristic 0. The classical theorem of Weitzenböck from 1932 states that for linear locally nilpotent derivations [Formula: see text] (known as Weitzenböck derivations), the algebra of constants [Formula: see text] is finitely generated. When the Weitzenböck derivation [Formula: see text] acts on the polynomial algebra [Formula: see text] in [Formula: see text] variables by [Formula: see text], [Formula: see text], [Formula: see text], Nowicki conjectured that [Formula: see text] is generated by [Formula: see text] and [Formula: see text] for all [Formula: see text]. There are several proofs based on different ideas confirming this conjecture. Considering arbitrary Weitzenböck derivations of the free [Formula: see text]-generated metabelian Lie algebra [Formula: see text], with few trivial exceptions, the algebra [Formula: see text] is not finitely generated. However, the vector subspace [Formula: see text] of the commutator ideal [Formula: see text] of [Formula: see text] is finitely generated as a [Formula: see text]-module. In this paper, we study an analogue of the Nowicki conjecture in the Lie algebra setting and give an explicit set of generators of the [Formula: see text]-module [Formula: see text].


1992 ◽  
Vol 35 (2) ◽  
pp. 201-212
Author(s):  
J. C. Beidleman ◽  
M. J. Tomkinson

The authors together with M. J. Karbe [Ill. J. Math. 33 (1989) 333–359] have considered Fitting classes of -groups and, under some rather strong restrictions, obtained an existence and conjugacy theorem for -injectors. Results of Menegazzo and Newell show that these restrictions are, in fact, necessary.The Fitting class is normal if, for each is the unique -injector of G. is abelian normal if, for each. For finite soluble groups these two concepts coincide but the class of Černikov-by-nilpotent -groups is an example of a nonabelian normal Fitting class of -groups. In all known examples in which -injectors exist is closely associated with some normal Fitting class (the Černikov-by-nilpotent groups arise from studying the locally nilpotent injectors).Here we investigate normal Fitting classes further, paying particular attention to the distinctions between abelian and nonabelian normal Fitting classes. Products and intersections with (abelian) normal Fitting classes lead to further examples of Fitting classes satisfying the conditions of the existence and conjugacy theorem.


Sign in / Sign up

Export Citation Format

Share Document