Some Simple Properties of Simple Nil Rings

1966 ◽  
Vol 9 (2) ◽  
pp. 197-200 ◽  
Author(s):  
W. A. McWorter

An outstanding unsolved problem in the theory of rings is the existence or non-existence of a simple nil ring. Such a ring cannot be locally nilpotent as is well known [ 5 ]. Hence, if a simple nil ring were to exist, it would follow that there exists a finitely generated nil ring which is not nilpotent. This seemed an unlikely situation until the appearance of Golod's paper [ 1 ] where a finitely generated, non-nilpotent ring is constructed for any d ≥ 2 generators over any field.

Author(s):  
Jayalakshmi ◽  
S. Madhavi Latha

Some properties of the right nucleus in generalized right alternative rings have been presented in this paper. In a generalized right alternative ring R which is finitely generated or free of locally nilpotent ideals, the right nucleus Nr equals the center C. Also, if R is prime and Nr ¹ C, then the associator ideal of R is locally nilpotent. Seong Nam [5] studied the properties of the right nucleus in right alternative algebra. He showed that if R is a prime right alternative algebra of char. ≠ 2 and Right nucleus Nr is not equal to the center C, then the associator ideal of R is locally nilpotent. But the problem arises when it come with the study of generalized right alternative ring as the ring dose not absorb the right alternative identity. In this paper we consider our ring to be generalized right alternative ring and try to prove the results of Seong Nam [5]. At the end of this paper we give an example to show that the generalized right alternative ring is not right alternative.


2019 ◽  
Vol 19 (05) ◽  
pp. 2050095
Author(s):  
Vesselin Drensky ◽  
Şehmus Fındık

Let [Formula: see text] be the polynomial algebra in [Formula: see text] variables over a field [Formula: see text] of characteristic 0. The classical theorem of Weitzenböck from 1932 states that for linear locally nilpotent derivations [Formula: see text] (known as Weitzenböck derivations), the algebra of constants [Formula: see text] is finitely generated. When the Weitzenböck derivation [Formula: see text] acts on the polynomial algebra [Formula: see text] in [Formula: see text] variables by [Formula: see text], [Formula: see text], [Formula: see text], Nowicki conjectured that [Formula: see text] is generated by [Formula: see text] and [Formula: see text] for all [Formula: see text]. There are several proofs based on different ideas confirming this conjecture. Considering arbitrary Weitzenböck derivations of the free [Formula: see text]-generated metabelian Lie algebra [Formula: see text], with few trivial exceptions, the algebra [Formula: see text] is not finitely generated. However, the vector subspace [Formula: see text] of the commutator ideal [Formula: see text] of [Formula: see text] is finitely generated as a [Formula: see text]-module. In this paper, we study an analogue of the Nowicki conjecture in the Lie algebra setting and give an explicit set of generators of the [Formula: see text]-module [Formula: see text].


Author(s):  
Michael Rich

AbstractTwo local nilpotent properties of an associative or alternative ringAcontaining an idempotent are shown. First, ifA=A11+A10+A01+A00is the Peirce decomposition ofArelative toethen ifais associative or semiprime alternative and 3-torsion free then any locally nilpotent idealBofAiigenerates a locally nilpotent ideal 〈B〉 ofA. As a consequenceL(Aii) =Aii∩L(A)for the Levitzki radicalL. Also bounds are given for the index of nilpotency of any finitely generated subring of 〈B〉. Second, ifA(x)denotes a homotope ofAthenL(A)⊆L(A(x))and, in particular, ifA(x)is an isotope ofAthenL(A)=L(A(x)).


2019 ◽  
Vol 62 (3) ◽  
pp. 733-738 ◽  
Author(s):  
Be'eri Greenfeld

AbstractWe prove two approximations of the open problem of whether the adjoint group of a non-nilpotent nil ring can be finitely generated. We show that the adjoint group of a non-nilpotent Jacobson radical cannot be boundedly generated and, on the other hand, construct a finitely generated, infinite-dimensional nil algebra whose adjoint group is generated by elements of bounded torsion.


1962 ◽  
Vol 58 (2) ◽  
pp. 185-195
Author(s):  
J. E. Roseblade

A group G is called locally soluble if every finitely generated subgroup of G is soluble. Terms like ‘locally nilpotent’ and ‘locally finite’ are defined similarly.


Author(s):  
D. H. McLain ◽  
P. Hall

1. If P is any property of groups, then we say that a group G is ‘locally P’ if every finitely generated subgroup of G satisfies P. In this paper we shall be chiefly concerned with the case when P is the property of being nilpotent, and will examine some properties of nilpotent groups which also hold for locally nilpotent groups. Examples of locally nilpotent groups are the locally finite p-groups (groups such that every finite subset is contained in a finite group of order a power of the prime p); indeed, every periodic locally nilpotent group is the direct product of locally finite p-groups.


2019 ◽  
Vol 30 (01) ◽  
pp. 117-123 ◽  
Author(s):  
Fei Yu Chen ◽  
Hannah Hagan ◽  
Allison Wang

We show that a differential polynomial ring over a locally nilpotent ring in several commuting variables is Behrens radical, extending a result by Chebotar.


2000 ◽  
Vol 62 (1) ◽  
pp. 141-148 ◽  
Author(s):  
Alireza Abdollahi

Let k be a positive integer. We denote by ɛk(∞) the class of all groups in which every infinite subset contains two distinct elements x, y such that [x,k y] = 1. We say that a group G is an -group provided that whenever X, Y are infinite subsets of G, there exists x ∈ X, y ∈ Y such that [x,k y] = 1. Here we prove that:(1) If G is a finitely generated soluble group, then G ∈ ɛ3(∞) if and only if G is finite by a nilpotent group in which every two generator subgroup is nilpotent of class at most 3.(2) If G is a finitely generated metabelian group, then G ∈ ɛk(∞) if and only if G/Zk (G) is finite, where Zk (G) is the (k + 1)-th term of the upper central series of G.(3) If G is a finitely generated soluble ɛk(∞)-group, then there exists a positive integer t depending only on k such that G/Zt (G) is finite.(4) If G is an infinite -group in which every non-trivial finitely generated subgroup has a non-trivial finite quotient, then G is k-Engel. In particular, G is locally nilpotent.


1998 ◽  
Vol 40 (2) ◽  
pp. 257-262 ◽  
Author(s):  
Howard Smith ◽  
James Wiegold

We were concerned in [12] with groups G that are isomorphic to all of their non-abelian subgroups. In order to exclude groups with all proper subgroups abelian, which are well understood in the finite case [7] and which include Tarski groups in the infinite case, we restricted attention to the class X of groups G that are isomorphic to their nonabelian subgroups and that contain proper subgroups of this type; such groups are easily seen to be 2-generator, and a complete classification was given in [12, Theorem 2] for the case G soluble. In the insoluble case, G/Z(G) is infinite simple [12; Theorem 1], though not much else was said in [12] about such groups. Here we examine a property which represents a natural generalisation of that discussed above. Let us say that a group G belongs to the class W if G is isomorphic to each of its non-nilpotent subgroups and not every proper subgroup of G is nilpotent. Firstly, note that finite groups in which all proper subgroups are nilpotent are (again) well understood [9]. In addition, much is known about infinite groups with all proper subgroups nilpotent (see, in particular, [8] and [13] for further discussion) although, even in the locally nilpotent case, there are still some gaps in our understanding of such groups. We content ourselvesin the present paper with discussing finitely generated W-groups— note that a W-group is certainly finitely generated or locally nilpotent. We shall have a little more to say about the locally nilpotent case below.


2011 ◽  
Vol 21 (05) ◽  
pp. 763-774 ◽  
Author(s):  
ANTONIO BEHN ◽  
ALBERTO ELDUQUE ◽  
ALICIA LABRA

This paper deals with the variety of commutative non associative algebras satisfying the identity [Formula: see text], γ ∈ K. In [3] it is proved that if γ = 0, 1 then any finitely generated algebra is nilpotent. Here we generalize this result by proving that if γ ≠ -1, then any such algebra is locally nilpotent. Our results require characteristic ≠ 2, 3.


Sign in / Sign up

Export Citation Format

Share Document