On the non-absolute summability of a Fourier series and the conjugate of a Fourier series by a Nörlund method

1967 ◽  
Vol 63 (2) ◽  
pp. 407-411 ◽  
Author(s):  
R. Mohanty ◽  
B. K. Ray

Let {Sn} be the sequence of partial sums of the infinite seriesΣαn. Let {pn} be a sequence of constants real or complex and let us setThe sequence {tn} of Nörlund means (5) or simply (N, pn) means of the sequence {Sn} generated by the sequence of coefficients {pn} is defined by the following sequence -to-sequence transformationThe series ∑αn or the sequence {Sn} is said to be summable (N, pn) to the sum S, ifand is said to be absolutely summable (N, pn) or summable |N, pn|, if the sequence {tn} is of bounded variation, that is, the series ∑|tn − tn−1| is convergent (2).

1969 ◽  
Vol 9 (1-2) ◽  
pp. 161-166 ◽  
Author(s):  
Fu Cheng Hsiang

Let be a given series with its partial sums {Sn} and {Pn} a sequence of real or complex parameters. Write. The transformation given by defines the Nörlund means of {Sn} generated by {Pn}. The series Σann is said to be absolutely summable (N, pn) or summable ∣N, pn∣, if {tn} is of bounded variation, i.e., Σ|tn—tn−1| converges.


1971 ◽  
Vol 12 (1) ◽  
pp. 86-90 ◽  
Author(s):  
G. D. Dikshit

Let σan be an infinite series, with sequence of partial sums {un}. Let {pn} be a sequence of constants, real or complex, and write Pn = po+p1+ … +pn The sequence-to-sequence transformation defines the sequence {tn} of Nörlund means of the sequence {u}, generated by the sequence {pn}. The series σan is said to be surnmable (N, pn), to sum s, if limn→∞ tn = s. It is said to be absolutely sum.mable (N, pn), or summable |N, pn|, if {tn} ∈BV.


1973 ◽  
Vol 16 (4) ◽  
pp. 599-602
Author(s):  
D. S. Goel ◽  
B. N. Sahney

Let be a given infinite series and {sn} the sequence of its partial sums. Let {pn} be a sequence of constants, real or complex, and let us write(1.1)If(1.2)as n→∞, we say that the series is summable by the Nörlund method (N,pn) to σ. The series is said to be absolutely summable (N,pn) or summable |N,pn| if σn is of bounded variation, i.e.,(1.3)


1967 ◽  
Vol 63 (1) ◽  
pp. 107-118 ◽  
Author(s):  
R. N. Mohapatra ◽  
G. Das ◽  
V. P. Srivastava

Definition. Let {sn} be the n-th partial sum of a given infinite series. If the transformationwhereis a sequence of bounded variation, we say that εanis summable |C, α|.


1967 ◽  
Vol 7 (2) ◽  
pp. 252-256 ◽  
Author(s):  
Fu Cheng Hsiang

Let Σn−0∞an, be a given infinite series and {sn} the sequence of its partial sums. Let {pn} be a sequence of constants, real or complex, and let us writeIfas n → ∞, then we say that the series is summable by the Nörlund method (N, pn) to σ And the series a,Σan, is said to be absolutely summable (N, pn) or summable |N, Pn| if {σn} is of bounded variation, i.e.,


2021 ◽  
Vol 27 (2) ◽  
Author(s):  
Elena E. Berdysheva ◽  
Nira Dyn ◽  
Elza Farkhi ◽  
Alona Mokhov

AbstractWe introduce and investigate an adaptation of Fourier series to set-valued functions (multifunctions, SVFs) of bounded variation. In our approach we define an analogue of the partial sums of the Fourier series with the help of the Dirichlet kernel using the newly defined weighted metric integral. We derive error bounds for these approximants. As a consequence, we prove that the sequence of the partial sums converges pointwisely in the Hausdorff metric to the values of the approximated set-valued function at its points of continuity, or to a certain set described in terms of the metric selections of the approximated multifunction at a point of discontinuity. Our error bounds are obtained with the help of the new notions of one-sided local moduli and quasi-moduli of continuity which we discuss more generally for functions with values in metric spaces.


1972 ◽  
Vol 18 (1) ◽  
pp. 13-17
Author(s):  
F. M. Khan

Let pn>0 be such that pn diverges, and the radius of convergence of the power seriesis 1. Given any series σan with partial sums sn, we shall use the notationand


Author(s):  
B. Kuttner

1. Following Lorentz, we suppose throughout that Ω(n) is a non-negati ve non-decreasing function of the non-negative integer n such that Ω(n)→ ∞ as n → ∞. Consider the summability method given by the sequence-to-sequence transformation corresponding to the matrix A = (ank). We say that Ω(n) is a summability function for A (or absolute summability function for A) if the following holds: Any bounded sequence {sn} such that the number of values of ν with ν ≤ n, sν ≠ 0 does not exceed Ω(n) is summable A (or is absolutely summable A, respectively). These definitions are due to Lorentz (4), (6). We shall be concerned with the case in which A is a regular Hausdorff method, say A = H = (H, μn). Then H is given by the matrix (hnk) withwithX(0) = X(0 + ) = 0, X(1) = 1;(see e.g.(1), chapter XI). We shall suppose throughout that these conditions are satisfied. It is known that H is then necessarily also absolutely regular.


1970 ◽  
Vol 22 (2) ◽  
pp. 202-208 ◽  
Author(s):  
H.-H. Körle

1. The Cesàro methods for ordinary [9, p. 17; 6, p. 96] and for absolute [9, p. 25] summation of infinite series can be generalized by the Riesz methods [7, p. 21; 12; 9, p. 52; 6, p. 86; 5, p. 2] and by “the generalized Cesàro methods“ introduced by Burkill [4] and Borwein and Russell [3]. (Also cf. [2]; for another generalization, see [8].) These generalizations raise the question as to their equivalence.We shall consider series(1)with complex terms an. Throughout, we will assume that(2)and we call (1) Riesz summable to a sum s relative to the type λ = (λn) and to the order κ, or summable (R, λ, κ) to s briefly, if the Riesz means(of the partial sums of (1)) tend to s as x → ∞.


Sign in / Sign up

Export Citation Format

Share Document