Harmonic functions on a Riemannian ball

1976 ◽  
Vol 80 (2) ◽  
pp. 277-282
Author(s):  
Mitsuru Nakai ◽  
Leo Sario

Consider the classes OHX of noncompact Riemannian manifolds M of dimension N ≥ 2 carrying no non-constant harmonic functions with properties X = P (positive), B (bounded), D (Dirichlet finite), or BD (B and D). Denote by OG the class of parabolic manifolds of dimension N ≥ 2. The following complete string of strict inclusion relations is known:

2012 ◽  
Vol 2012 ◽  
pp. 1-8
Author(s):  
M. T. Mustafa

For Riemannian manifoldsMandN, admitting a submersionϕwith compact fibres, we introduce the projection of a function via its decomposition into horizontal and vertical components. By comparing the Laplacians onMandN, we determine conditions under which a harmonic function onU=ϕ−1(V)⊂Mprojects down, via its horizontal component, to a harmonic function onV⊂N.


1985 ◽  
Vol 26 (2) ◽  
pp. 115-120 ◽  
Author(s):  
Murali Rao

Let D be a domain in Euclidean space of d dimensions and K a compact subset of D. The well known Harnack inequality assures the existence of a positive constant A depending only on D and K such that (l/A)u(x)<u(y)<Au(x) for all x and y in K and all positive harmonic functions u on D. In this we obtain a global integral version of this inequality under geometrical conditions on the domain. The result is the following: suppose D is a Lipschitz domain satisfying the uniform exterior sphere condition—stated in Section 2. If u is harmonic in D with continuous boundary data f thenwhere ds is the d — 1 dimensional Hausdorff measure on the boundary ժD. A large class of domains satisfy this condition. Examples are C2-domains, convex domains, etc.


1963 ◽  
Vol 15 ◽  
pp. 157-168 ◽  
Author(s):  
Josephine Mitchell

Let be a closed rectifiable curve, not going through the origin, which bounds a domain Ω in the complex ζ-plane. Let X = (x, y, z) be a point in three-dimensional euclidean space E3 and setThe Bergman-Whittaker operator defined by


2001 ◽  
Vol 162 ◽  
pp. 149-167
Author(s):  
Yong Hah Lee

In this paper, we prove that if a complete Riemannian manifold M has finitely many ends, each of which is a Harnack end, then the set of all energy finite bounded A-harmonic functions on M is one to one corresponding to Rl, where A is a nonlinear elliptic operator of type p on M and l is the number of p-nonparabolic ends of M. We also prove that if a complete Riemannian manifold M is roughly isometric to a complete Riemannian manifold with finitely many ends, each of which satisfies the volume doubling condition, the Poincaré inequality and the finite covering condition near infinity, then the set of all energy finite bounded A-harmonic functions on M is finite dimensional. This result generalizes those of Yau, of Donnelly, of Grigor’yan, of Li and Tam, of Holopainen, and of Kim and the present author, but with a barrier argument at infinity that the peculiarity of nonlinearity demands.


2020 ◽  
Vol 120 (1-2) ◽  
pp. 87-101
Author(s):  
Dario D. Monticelli ◽  
Fabio Punzo ◽  
Marco Squassina

We establish necessary conditions for the existence of solutions to a class of semilinear hyperbolic problems defined on complete noncompact Riemannian manifolds, extending some nonexistence results for the wave operator with power nonlinearity on the whole Euclidean space. A general weight function depending on spacetime is allowed in front of the power nonlinearity.


Sign in / Sign up

Export Citation Format

Share Document