On critical nonlinear boundary problems for p-harmonic functions on Riemannian manifolds

Author(s):  
Tang Zhongwei ◽  
Zheng Binbin
2012 ◽  
Vol 2012 ◽  
pp. 1-8
Author(s):  
M. T. Mustafa

For Riemannian manifoldsMandN, admitting a submersionϕwith compact fibres, we introduce the projection of a function via its decomposition into horizontal and vertical components. By comparing the Laplacians onMandN, we determine conditions under which a harmonic function onU=ϕ−1(V)⊂Mprojects down, via its horizontal component, to a harmonic function onV⊂N.


2001 ◽  
Vol 162 ◽  
pp. 149-167
Author(s):  
Yong Hah Lee

In this paper, we prove that if a complete Riemannian manifold M has finitely many ends, each of which is a Harnack end, then the set of all energy finite bounded A-harmonic functions on M is one to one corresponding to Rl, where A is a nonlinear elliptic operator of type p on M and l is the number of p-nonparabolic ends of M. We also prove that if a complete Riemannian manifold M is roughly isometric to a complete Riemannian manifold with finitely many ends, each of which satisfies the volume doubling condition, the Poincaré inequality and the finite covering condition near infinity, then the set of all energy finite bounded A-harmonic functions on M is finite dimensional. This result generalizes those of Yau, of Donnelly, of Grigor’yan, of Li and Tam, of Holopainen, and of Kim and the present author, but with a barrier argument at infinity that the peculiarity of nonlinearity demands.


2020 ◽  
Vol 58 (4) ◽  
pp. 477-496
Author(s):  
Sigmundur Gudmundsson ◽  
Marko Sobak

Abstract In this paper we introduce the notion of complex isoparametric functions on Riemannian manifolds. These are then employed to devise a general method for constructing proper r-harmonic functions. We then apply this to construct the first known explicit proper r-harmonic functions on the Lie group semidirect products $${{\mathbb {R}}}^m \ltimes {{\mathbb {R}}}^n$$ R m ⋉ R n and $${{\mathbb {R}}}^m \ltimes \mathrm {H}^{2n+1}$$ R m ⋉ H 2 n + 1 , where $$\mathrm {H}^{2n+1}$$ H 2 n + 1 denotes the classical $$(2n+1)$$ ( 2 n + 1 ) -dimensional Heisenberg group. In particular, we construct such examples on all the simply connected irreducible four-dimensional Lie groups.


Sign in / Sign up

Export Citation Format

Share Document