horizontal component
Recently Published Documents


TOTAL DOCUMENTS

296
(FIVE YEARS 38)

H-INDEX

26
(FIVE YEARS 3)

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Wenru Lu ◽  
Min Zhao ◽  
Lingling Jia

A tower anchorage structure with an exposed steel anchor box is commonly used for cable-stayed bridges. Many researchers have conducted studies on this structure by considering a single segment. However, in practical engineering, the stress of multisegmented tower anchorage structure is not completely similar to that of single segment, and the forces between segments affect each other. Hence, in this study, the mechanical behavior of a multisegment anchorage structure with an exposed steel anchor box was investigated via finite element analysis. Furthermore, the load transfer path and stress distribution characteristics of the structure were investigated. The results indicate that the horizontal component of the cable force is borne by the side plate of the steel anchor box, the diaphragm, and the side wall of the concrete tower column, while the vertical component is transmitted by the steel anchor box and concrete tower column. Under the action of this cable force, the horizontal component of the cable force borne by the middle segment increases, while the components at the two end segments decrease. The vertical force is greater on the lower tower segments. The stress levels on the side plate and on the diaphragm of the steel anchor box in the middle section are high. Under the cable force load, the frame formed by the end plate and side plate of the steel anchor box expands outward. The end plate is mainly under a tensile load, and the tensile stress level on the lower section exceeds that on the upper section. A high-stress area for the concrete tower is observed in the steel-concrete joint. The stud group of the anchorage structure is subjected to horizontal and vertical shear forces, and no “saddle-shaped” distribution of the stud shear is found. An optimal arrangement method for the stud group was proposed to optimize its mechanical performance.


2021 ◽  
Vol 11 (4) ◽  
pp. 618-628
Author(s):  
Christol Fabre ◽  
Haoyue Tan ◽  
Georges Dumas ◽  
Ludovic Giraud ◽  
Philippe Perrin ◽  
...  

Background: To establish in patients with peripheral vestibular disorders relations between skull vibration-induced nystagmus (SVIN) different components (horizontal, vertical, torsional) and the results of different structurally related vestibular tests. Methods: SVIN test, canal vestibular test (CVT: caloric test + video head impulse test: VHIT), otolithic vestibular test (OVT: ocular vestibular evoked myogenic potential oVEMP + cervical vestibular evoked myogenic potential cVEMP) performed on the same day in 52 patients with peripheral vestibular diseases (age < 65 years), and 11 control patients were analyzed. Mixed effects logistic regression analysis was performed to assert whether the presence of nystagmus in SVIN (3D analysis) have an association with the presence of peripheral vestibular dysfunction measured by vestibular explorations (CVT or OVT). Results: We obtained different groups: Group-Co (control group), Group-VNT (dizzy patients with no vestibular tests alterations), Group-O (OVT alterations only), Group-C (CVT alterations only), Group-M (mixed alterations). SVIN-SPV horizontal component was significantly higher in Group-M than in the other groups (p = 0.005) and correlated with alterations of lateral-VHIT (p < 0.001), caloric test (p = 0.002) and oVEMP (p = 0.006). SVIN-SPV vertical component was correlated with the anterior-VHIT and oVEMP alterations (p = 0.007; p = 0.017, respectively). SVIN-SPV torsional component was correlated with the anterior-VHIT positivity (p = 0.017). SVIN was the only positive test for 10% of patients (83% of Group-VNT). Conclusion: SVIN-SPV analysis in dizzy patients shows significant correlation to both CVT and OVT. SVIN horizontal component is mainly relevant to both vestibular tests exploring lateral canal and utricle responses. SVIN-SPV is significantly higher in patients with combined canal and otolith lesions. In some patients with dizziness, SVIN may be the only positive test.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Hengli Wang ◽  
Zhengsheng Zou ◽  
Jian Liu ◽  
Xinyu Wang

When considering the friction and bonding force between the back of the retaining wall and the horizontal fill behind the wall, the principal stress of the soil element near the vertical back of the retaining wall is no longer vertical and horizontal but deflects to a certain extent. When the surface of the backfill becomes inclined, the principal stress of the soil behind the wall deflects in a more complicated way. In this paper, the cohesion of the soil element in the fill with an inclined surface is assumed, and the formulas for calculating the active and passive earth pressures of the retaining wall with inclined cohesive backfill are derived by rotating the principal stress of the soil element behind the wall. The proposed method is compared with the existing algorithm, and the influences of the inclination and the cohesion of the fill are analyzed. The results show that the proposed method is more universal. Both the active and passive earth pressures increase rapidly with the increase of the inclination of the fill. The active earth pressure and its horizontal component decrease with the increase of the cohesion of the fill, while the passive earth pressure and its horizontal component increase with the increase of the cohesion of the fill.


2021 ◽  
Vol 11 (19) ◽  
pp. 9052
Author(s):  
Linwei Tan ◽  
Yongfei Yang ◽  
Weidong Shi ◽  
Cheng Chen ◽  
Zhanshan Xie

To investigate the effect of blade wrap angle on the hydrodynamic radial force of a single blade centrifugal pump, numerical simulation is conducted on the pumps with different blade wrap angles. The effect of the wrap angle on the external characteristics and the radial force of a single blade centrifugal pump was analyzed according to the simulation result. It is found that, with the increase of the blade wrap angle, the head and efficiency of the single blade centrifugal pump are improved, the H-Q curve becomes steeper, and the efficiency also increased gradually, while the high-efficiency area is narrowed. The blade wrap angle has a great effect on the radial force of the single blade centrifugal pump. When the blade wrap angle is less than 360°, the horizontal component of the radial force is negative and the value is reduced with the increase of the wrap angle of the blade. When the wrap angle is larger than 360°, the horizontal component of the radial force is positive and the value increases with the increase of the wrap angle. Under part-loading conditions, the radial force of the single blade pump is significantly reduced with the increase of the blade wrap angle. When the wrap angle is smaller than 360°, the radial force decreases with the flow rate increase. In the condition that the wrap angle is larger than 360°, the radial force increases with the flow rate increase.


2021 ◽  
Author(s):  
Yuhan Lin ◽  
Jess Lan Ouyang ◽  
Min Fu ◽  
Jingli Peng ◽  
Man Tang ◽  
...  

Both vertical and horizontal components of the strain are common for earthquakes, manifested in the forms of horizontal and upward movements of the earth crust. Horizontal component generates gaps in Point A, and gaps are subsequently closed by horizontal component in Point B. Reiteration of the cycles gives rise to the opening/closing phenomena seen on the ground hit by earthquakes.


Author(s):  
Bitopan Das ◽  
Rajdeep Ghosh

Vehicles with off-road capabilities in the present times have begun to focus more on ride comfort. One of the most common uses of such vehicles is to help commuters travel on rough terrain, away from paved roads. Vertical suspensions carry out the work of minimizing the impact from objects like rocks and stones that comprise the terrain. However, such undulations in the terrain are not just vertically bulged. The geometry of the object, i.e., the rock/stone and the wheel coming in contact with the object gives rise to the familiar vertical impact forces for which vertical suspensions are provided. The other component of the impact force arising from the same irregular geometry of the undulation, i.e., the horizontal component of impact force which acts parallel to the axle of the wheels remains neglected. This might lead to passengers experiencing sideways swaying while inside the vehicle, even if there are independent vertical suspensions. In this paper, a study of the effects of horizontal component of impact forces on off-road vehicles was done and after that, spring-shock absorber arrangements to counter these forces were analyzed with springs of different spring-stiffness values.


2021 ◽  
Author(s):  
Nathalie Elena Moreno Madueño ◽  
Reza Kianoush

The buckling failure of reinforced concrete spherical shell structures under the effect of the horizontal component of earthquake is investigated using a finite element method over a wide range of shell configurations. For this effect, two different loading case scenarios are considered; first, the shell is analyzed under the effects of the vertical seismic component alone. Then, the model is reanalyzed under the same loading conditions plus the horizontal earthquake component, taking into account two different horizontal-to-vertical earthquake spectral ratios. It is concluded that including the horizontal component of earthquake can result in a reduction in the buckling capacity of this type of structure; the impact of which is highly influenced by the horizontal-to-vertical earthquake spectral ratio and the shell geometry. It is also observed that the formulation adopted by ACI slightly overestimates the buckling capacity of spherical shells especially when horizontal seismic effects are included.


Sign in / Sign up

Export Citation Format

Share Document