Applications of outwardly simple line families to plane convex sets

1977 ◽  
Vol 82 (3) ◽  
pp. 353-356 ◽  
Author(s):  
K. J. Falconer

We use the concept of outwardly simple line families (see Hammer and Sobczyk (4)) first to obtain conditions involving mid-chords that ensure that a plane convex set is centro-symmetric, and secondly to show that it is possible to inscribe a semicircle of diameter ω in any convex set of minimal width ω in at least 3 different ways. We show that a plane convex set X is centro-symmetric if every mid-chord of X (that is every chord of X mid-way between two parallel lines of support of X) bisects the area of X, or alternatively if every mid-chord of X is a diameter of X (that is a longest chord in some direction). Hammer and Smith (3) have used outwardly simple line families in a different way to show that a plane convex set X is centro-symmetric if every diameter of X bisects the area of X, or if every diameter of X bisects the perimeter of X.

1998 ◽  
Vol 58 (1) ◽  
pp. 159-166
Author(s):  
M. A. Hernández Cifre ◽  
S. Segura Gomis

We obtain two inequalities relating the diameter and the (minimal) width with the area of a planar convex set containing exactly one point of the integer lattice in its interior. They are best possible. We then use these results to obtain some related inequalities.


Author(s):  
Tetiana Osipchuk

The topological properties of classes of generally convex sets in multidimensional real Euclidean space $\mathbb{R}^n$, $n\ge 2$, known as $m$-convex and weakly $m$-convex, $1\le m<n$, are studied in the present work. A set of the space $\mathbb{R}^n$ is called \textbf{\emph{$m$-convex}} if for any point of the complement of the set to the whole space there is an $m$-dimensional plane passing through this point and not intersecting the set. An open set of the space is called \textbf{\emph{weakly $m$-convex}}, if for any point of the boundary of the set there exists an $m$-dimensional plane passing through this point and not intersecting the given set. A closed set of the space is called \textbf{\emph{weakly $m$-convex}} if it is approximated from the outside by a family of open weakly $m$-convex sets. These notions were proposed by Professor Yuri Zelinskii. It is known the topological classification of (weakly) $(n-1)$-convex sets in the space $\mathbb{R}^n$ with smooth boundary. Each such a set is convex, or consists of no more than two unbounded connected components, or is given by the Cartesian product $E^1\times \mathbb{R}^{n-1}$, where $E^1$ is a subset of $\mathbb{R}$. Any open $m$-convex set is obviously weakly $m$-convex. The opposite statement is wrong in general. It is established that there exist open sets in $\mathbb{R}^n$ that are weakly $(n-1)$-convex but not $(n-1)$-convex, and that such sets consist of not less than three connected components. The main results of the work are two theorems. The first of them establishes the fact that for compact weakly $(n-1)$-convex and not $(n-1)$-convex sets in the space $\mathbb{R}^n$, the same lower bound for the number of their connected components is true as in the case of open sets. In particular, the examples of open and closed weakly $(n-1)$-convex and not $(n-1)$-convex sets with three and more connected components are constructed for this purpose. And it is also proved that any compact weakly $m$-convex and not $m$-convex set of the space $\mathbb{R}^n$, $n\ge 2$, $1\le m<n$, can be approximated from the outside by a family of open weakly $m$-convex and not $m$-convex sets with the same number of connected components as the closed set has. The second theorem establishes the existence of weakly $m$-convex and not $m$-convex domains, $1\le m<n-1$, $n\ge 3$, in the spaces $\mathbb{R}^n$. First, examples of weakly $1$-convex and not $1$-convex domains $E^p\subset\mathbb{R}^p$ for any $p\ge3$, are constructed. Then, it is proved that the domain $E^p\times\mathbb{R}^{m-1}\subset\mathbb{R}^n$, $n\ge 3$, $1\le m<n-1$, is weakly $m$-convex and not $m$-convex.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Francesco M. Malvestuto

Given a connected hypergraph with vertex set V, a convexity space on is a subset of the powerset of V that contains ∅, V, and the singletons; furthermore, is closed under intersection and every set in is connected in . The members of are called convex sets. The convex hull of a subset X of V is the smallest convex set containing X. By a cluster of we mean any nonempty subset of V in which every two vertices are separated by no convex set. We say that a convexity space on is decomposable if it satisfies the following three axioms: (i) the maximal clusters of form an acyclic hypergraph, (ii) every maximal cluster of is a convex set, and (iii) for every nonempty vertex set X, a vertex does not belong to the convex hull of X if and only if it is separated from X by a convex cluster. We prove that a decomposable convexity space on is fully specified by the maximal clusters of in that (1) there is a closed formula which expresses the convex hull of a set in terms of certain convex clusters of and (2) is a convex geometry if and only if the subspaces of induced by maximal clusters of are all convex geometries. Finally, we prove the decomposability of some known convexities in graphs and hypergraphs taken from the literature (such as “monophonic” and “canonical” convexities in hypergraphs and “all-paths” convexity in graphs).


2018 ◽  
Vol 55 (4) ◽  
pp. 421-478
Author(s):  
Jesus Jerónimo-Castro ◽  
Endre Makai, Jr.

High proved the following theorem. If the intersections of any two congruent copies of a plane convex body are centrally symmetric, then this body is a circle. In our paper we extend the theorem of High to spherical, Euclidean and hyperbolic spaces, under some regularity assumptions. Suppose that in any of these spaces there is a pair of closed convex sets of class C+2 with interior points, different from the whole space, and the intersections of any congruent copies of these sets are centrally symmetric (provided they have non-empty interiors). Then our sets are congruent balls. Under the same hypotheses, but if we require only central symmetry of small intersections, then our sets are either congruent balls, or paraballs, or have as connected components of their boundaries congruent hyperspheres (and the converse implication also holds). Under the same hypotheses, if we require central symmetry of all compact intersections, then either our sets are congruent balls or paraballs, or have as connected components of their boundaries congruent hyperspheres, and either d ≥ 3, or d = 2 and one of the sets is bounded by one hypercycle, or both sets are congruent parallel domains of straight lines, or there are no more compact intersections than those bounded by two finite hypercycle arcs (and the converse implication also holds). We also prove a dual theorem. If in any of these spaces there is a pair of smooth closed convex sets, such that both of them have supporting spheres at any of their boundary points Sd for Sd of radius less than π/2- and the closed convex hulls of any congruent copies of these sets are centrally symmetric, then our sets are congruent balls.


10.37236/1805 ◽  
2004 ◽  
Vol 11 (1) ◽  
Author(s):  
Seog-Jin Kim ◽  
Alexandr Kostochka ◽  
Kittikorn Nakprasit

Let $G$ be the intersection graph of a finite family of convex sets obtained by translations of a fixed convex set in the plane. We show that every such graph with clique number $k$ is $(3k-3)$-degenerate. This bound is sharp. As a consequence, we derive that $G$ is $(3k-2)$-colorable. We show also that the chromatic number of every intersection graph $H$ of a family of homothetic copies of a fixed convex set in the plane with clique number $k$ is at most $6k-6$.


1984 ◽  
Vol 27 (2) ◽  
pp. 233-237 ◽  
Author(s):  
H. Groemer

AbstractIn the euclidean plane let K be a compact convex set and Sl, S2,… strips of respective widths wl, w2,… Some conditions on Σ wi are given that imply that K can be covered by translates of the strips Si. These conditions involve the perimeter, the diameter, or the minimal width of K and yield improvements of previously known results.


1970 ◽  
Vol 13 (2) ◽  
pp. 175-179 ◽  
Author(s):  
G. T. Sallee

In this paper we provide new proofs of some interesting results of Firey [2] on isoperimetric ratios of Reuleaux polygons. Recall that a Reuleaux polygon is a plane convex set of constant width whose boundary consists of a finite (odd) number of circular arcs. Equivalently, it is the intersection of a finite number of suitably chosen congruent discs. For more details, see [1, p. 128].If a Reuleaux polygon has n sides (arcs) of positive length (where n is odd and ≥ 3), we will refer to it as a Reuleaux n-gon, or sometimes just as an n-gon. If all of the sides are equal, it is termed a regular n-gon.


1996 ◽  
Vol 28 (02) ◽  
pp. 384-393 ◽  
Author(s):  
Lutz Dümbgen ◽  
Günther Walther

The Hausdorff distance between a compact convex set K ⊂ ℝd and random sets is studied. Basic inequalities are derived for the case of being a convex subset of K. If applied to special sequences of such random sets, these inequalities yield rates of almost sure convergence. With the help of duality considerations these results are extended to the case of being the intersection of a random family of halfspaces containing K.


1968 ◽  
Vol 20 ◽  
pp. 144-157 ◽  
Author(s):  
R. A. Brualdi
Keyword(s):  

In (8) M. V. Menon investigates the diagonal equivalence of a non-negative matrix A to one with prescribed row and column sums and shows that this equivalence holds provided there exists at least one non-negative matrix with these row and column sums and with zeros in exactly the same positions A has zeros. However, he leaves open the question of when such a matrix exists. W. B. Jurkat and H.J. Ryser in (7) study the convex set of all m × n non-negative matrices having given row and column sums.


1985 ◽  
Vol 17 (02) ◽  
pp. 308-329 ◽  
Author(s):  
D. G. Kendall

The paper starts with a simple direct proof that . A new formula is given for the shape-density for a triangle whose vertices are i.i.d.-uniform in a compact convex set K, and an exact evaluation of that shape-density is obtained when K is a circular disk. An (x, y)-diagram for an auxiliary shape-density is then introduced. When K = circular disk, it is shown that is virtually constant over a substantial region adjacent to the relevant section of the collinearity locus, large enough to contain the work-space for most collinearity studies, and particularly appropriate when the ‘strip’ method is used to assess near-collinearity.


Sign in / Sign up

Export Citation Format

Share Document