circular disk
Recently Published Documents


TOTAL DOCUMENTS

693
(FIVE YEARS 74)

H-INDEX

35
(FIVE YEARS 3)

2021 ◽  
Vol 933 ◽  
Author(s):  
S. Ramanarayanan ◽  
W. Coenen ◽  
A.L. Sánchez

This paper investigates the air flow induced by a rigid circular disk or piston vibrating harmonically along its axis of symmetry in the immediate vicinity of a parallel surface. Previous attempts to characterize these so-called ‘squeeze-film’ systems largely relied on simplifications afforded by neglecting either fluid acceleration or viscous forces inside the thin enclosed gas layer. The present viscoacoustic analysis employs the asymptotic limit of small vibration amplitudes to investigate the flow by systematic reduction of the Navier–Stokes equations in two distinct flow regions, namely, the inner gaseous film where streamlines are nearly parallel to the confining walls and the near-edge region of non-slender flow that features gas exchange with the surrounding stagnant atmosphere. The flow in the gaseous film depends on the relevant Stokes number, defined as the ratio of the characteristic viscous time across the film to the characteristic oscillation time, and on a compressibility parameter, defined as the square of the ratio of the acoustic time for radial pressure equilibration to the oscillation time. A Strouhal number based on the local residence time emerges as an additional governing parameter for the near-edge region, which is incompressible at leading order. The method of matched asymptotic expansions is used to describe the solution in both regions, across which the time-averaged pressure exhibits comparable variations that give opposing contributions to the resulting time-averaged force experienced by the disk or piston. A diagram structured with the Stokes number and compressibility parameter as coordinates reveals that this steady squeeze-film force, typically repulsive for small values of the Stokes number, alternates to attraction across a critical separation contour in the parametric domain that exists for all Strouhal numbers. This analysis provides, for the first time, a unifying viscoacoustic theory of axisymmetric squeeze films, which yields a reduced parametric description for the time-averaged repulsion/attraction force that is potentially useful in applications including non-contact fluid bearings and robot locomotion.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Unjong Yu ◽  
Hoseung Jang ◽  
Chi-Ok Hwang

Abstract We develop a last-passage Monte Carlo algorithm on a conducting surface at non-constant potentials. In the previous researches, last-passage Monte Carlo algorithms on conducting surfaces with a constant potential have been developed for charge density at a specific point or on a finite region and a hybrid BIE-WOS algorithm for charge density on a conducting surface at non-constant potentials. In the hybrid BIE-WOS algorithm, they used a deterministic method for the contribution from the lower non-constant potential surface. In this paper, we modify the hybrid BIE-WOS algorithm to a last-passage Monte Carlo algorithm on a conducting surface at non-constant potentials, where we can avoid the singularities on the non-constant potential surface very naturally. We demonstrate the last-passage Monte Carlo algorithm for charge densities on a circular disk and the four rectangle plates with a simple voltage distribution, and update the corner singularities on the unit square plate and cube.


2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Inho Bae ◽  
Kyung-Seob Lim ◽  
Jun-Kyu Park ◽  
Ju Han Song ◽  
Sin-Hye Oh ◽  
...  

Abstract Objective Various surface modification techniques that can further improve the function and usability of stainless steel as a medical device have been reported. In the present study, the physical and biological properties of nanoporous stainless steel as well as its usefulness for drug delivery were assessed. Methods The specimen was prepared with a circular disk shape (15 mm in diameter and 1 mm in thickness). The disk was subjected to electropolishing at a constant voltage of 20 V and 10 A for 10 min in an acidic environment (50% H2SO4). Everolimus (EVL) was used as a testing drug for drug-loading capacity of the material surface and release kinetics. The physiobiological properties of the material were assessed using platelet adhesion, and smooth muscle cell (SMC) adhesion, migration, and proliferation assays. Results The surface roughness of the postpolishing group was greater than that of the nonpolishing group. Platelet adhesion and SMC adhesion and migration were inhibited in the postpolishing group compared to those in the prepolishing group. In the postpolishing group, the total amount of EVL on the surface (i.e., drug storage rate) was higher and the drug release rate was lower, with half the amount of the EVL released within 4 days compared with only 1 day for that of the prepolishing group. Conclusion Taken together, this stainless steel with a nanoporous surface could be used as a medical device for controlling cellular responses and carrying drugs.


Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 853
Author(s):  
Jung-Woong Kim ◽  
Hyun-Chan Kim ◽  
Lindong Zhai ◽  
Dickens Owino Agumba ◽  
Jaehwan Kim

Nanocellulose (NC) has been spotlighted as a new building block of future materials since it has many advantages, such as being lightweight and environment-friendly and having high mechanical properties and heat resistance. However, the use of NC requires an upscale manufacturing process to maintain its advantageous properties. Herein, the process of assembling NC into a macro-scale bulk material was developed through a combination of steam treatment and hot press molding. The steam treatment was applied to an NC paste to energize the hydroxyl groups in the cellulose, followed by two stages of hot press molding, which helped in the self-assembly of NC without adhesives. Cellulose nanocrystals were used as the NC, and circular disk shape specimens were prepared. The mechanical properties of the prepared bulk material were higher than typical engineering plastics. In addition, an end mill machining test of the NC bulk material showed its machinability. This paper showed the processing feasibility of NC bulk material, which can substitute plastics.


2021 ◽  
Vol 15 (02) ◽  
Author(s):  
Guiru Gu ◽  
Thitikorn Kemsri ◽  
Boyang Xiang ◽  
Ainaz GhafaryAghdam ◽  
Xuejun Lu

2021 ◽  
Author(s):  
L. Di Liddo ◽  
D. Naylor

A numerical and experimental study, in the preliminary stages, has been conducted examining the effect of swirling flow on the natural convective heat transfer rate from a flat, horizontal, heated, upward facing, isothermal circular disk surrounded by insulation.


Sign in / Sign up

Export Citation Format

Share Document