scholarly journals The spectra associated to ℐ-monoids

Author(s):  
J. P. May

In this final sequel to (9), I shall prove a general consistency statement which seems to me to complete the foundations of infinite loop space theory. In particular, this result will specialize to yield the last step of the proof of the following theorem about the stable classifying spaces of geometric topology.

2019 ◽  
Vol 71 (1) ◽  
pp. 207-246
Author(s):  
Bertrand J Guillou ◽  
J Peter May ◽  
Mona Merling ◽  
Angélica M Osorno

Abstract We give an operadic definition of a genuine symmetric monoidal $G$-category, and we prove that its classifying space is a genuine $E_\infty $$G$-space. We do this by developing some very general categorical coherence theory. We combine results of Corner and Gurski, Power and Lack to develop a strictification theory for pseudoalgebras over operads and monads. It specializes to strictify genuine symmetric monoidal $G$-categories to genuine permutative $G$-categories. All of our work takes place in a general internal categorical framework that has many quite different specializations. When $G$ is a finite group, the theory here combines with previous work to generalize equivariant infinite loop space theory from strict space level input to considerably more general category level input. It takes genuine symmetric monoidal $G$-categories as input to an equivariant infinite loop space machine that gives genuine $\Omega $-$G$-spectra as output.


2014 ◽  
Vol 7 (4) ◽  
pp. 1077-1117 ◽  
Author(s):  
Matthew Ando ◽  
Andrew J. Blumberg ◽  
David Gepner ◽  
Michael J. Hopkins ◽  
Charles Rezk

2006 ◽  
Vol 205 (1) ◽  
pp. 163-228 ◽  
Author(s):  
A.D. Elmendorf ◽  
M.A. Mandell

Author(s):  
Richard J. Steiner

LetXbe a topological space with base-point. Thealgebraic K-theory AXofXis a space invented by Waldhausen in (15) for use in geometric topology. It can be defined in two ways, which I shall callgeometricandring-theoretic; Steinberger ((12)) has shown them to be equivalent.The geometric method ((15), corollary to lemma 2·1) givesAXas the group-completion of the geometric realization of a permutative category. It follows from the machinery of May ((4), 4) or Segal (11) thatAXis an infinite loop space in a well-defined way ((6)).


Author(s):  
TOMÁŠ ZEMAN

Abstract We study quotients of mapping class groups ${\Gamma _{g,1}}$ of oriented surfaces with one boundary component by the subgroups ${{\cal I}_{g,1}}(k)$ in the Johnson filtrations, and we show that the stable classifying spaces ${\mathbb {Z}} \times B{({\Gamma _\infty }/{{\cal I}_\infty }(k))^ + }$ after plus-construction are infinite loop spaces, fitting into a tower of infinite loop space maps that interpolates between the infinite loop spaces ${\mathbb {Z}} \times B\Gamma _\infty ^ + $ and ${\mathbb {Z}} \times B{({\Gamma _\infty }/{{\cal I}_\infty }(1))^ + } \simeq {\mathbb {Z}} \times B{\rm{Sp}}{({\mathbb {Z}})^ + }$ . We also show that for each level k of the Johnson filtration, the homology of these quotients with suitable systems of twisted coefficients stabilises as the genus of the surface goes to infinity.


Sign in / Sign up

Export Citation Format

Share Document