Norm and spectral radius for algebraic elements of a Banach algebra

1980 ◽  
Vol 88 (1) ◽  
pp. 129-133 ◽  
Author(s):  
N. J. Young

The purpose of this note is to show that, for any algebraic element a of a Banach algebra and certain analytic functions f, one can give an upper bound for ‖f(a)‖ in terms of ‖a‖ and the spectral radius ρ(a) of a. To illustrate the nature of the result, consider the norms of powers of an element a of unit norm. In general, the spectral radius formulacontains all that can be said (that is, the limit ρ(a) can be approached arbitrarily slowly). If we have the additional information that a is algebraic of degree n we can say a good deal more. In the case of a C*-algebra we have the neat result that, if ‖a‖ ≤ 1,(see Theorem 2), while for a general Banach algebra we have at least

1974 ◽  
Vol 19 (1) ◽  
pp. 59-69 ◽  
Author(s):  
F. F. Bonsall ◽  
A. C. Thompson

Let A denote a complex Banach algebra with unit, Inv(A) the set of invertible elements of A, Sp(a) and r(a) the spectrum and spectral radius respectively of an element a of A. Let Γ denote the set of elements of A whose spectra contain non-negative real numbers, i.e.


1979 ◽  
Vol 22 (3) ◽  
pp. 271-275 ◽  
Author(s):  
G. J. Murphy ◽  
T. T. West

If A is a complex Banach algebra (not necessarily unital) and x∈A, σ(x) will denote the spectrum and spectral radius of x in A. If I is a closed two-sided ideal in A let x + I denote the coset in the quotient algebra A/I containing x. Then


1973 ◽  
Vol 15 (2) ◽  
pp. 129-137
Author(s):  
Sadayuki Yamamuro

Let E be a real Banach space. If f: E→E is (Fréchet-) differentiable at every point of E, the derivative of f at x is denoted by f'(x), which is an element of the Banach algebra ℒ=ℒ(E) of all linear continuous mappings of E into itself with the usual upper bound norm, and, if we put , we have .


2011 ◽  
Vol 90 (104) ◽  
pp. 135-143
Author(s):  
Neeraj Srivastava ◽  
S. Bhattacharya ◽  
S.N. Lal

In the first part of the paper [5], we gave a new definition of real or complex 2-normed algebras and 2-Banach algebras. Here we give two examples which establish that not all 2-normed algebras are normable and a 2-Banach algebra need not be a 2-Banach space. We conclude by deriving a new and interesting spectral radius formula for 1-Banach algebras from the basic properties of 2-Banach algebras and thus vindicating our definitions of 2-normed and 2-Banach algebras given in [5].


2019 ◽  
Vol 11 (06) ◽  
pp. 1950070
Author(s):  
Shuang Zhang ◽  
Yan Zhu

For a real number [Formula: see text], the [Formula: see text]-matrix of a graph [Formula: see text] is defined to be [Formula: see text] where [Formula: see text] and [Formula: see text] are the adjacency matrix and degree diagonal matrix of [Formula: see text], respectively. The [Formula: see text]-spectral radius of [Formula: see text], denoted by [Formula: see text], is the largest eigenvalue of [Formula: see text]. In this paper, we consider the upper bound of the [Formula: see text]-spectral radius [Formula: see text], also we give some upper bounds for the second largest eigenvalue of [Formula: see text]-matrix.


1968 ◽  
Vol 8 (2) ◽  
pp. 242-249 ◽  
Author(s):  
R. A. Smith

In this paper a denotes a square matrix with real or complex elements (though the theorems and their proofs are valid in any Banach algebra). Its spectral radius p(a) is given by with any matrix norm (see [4], p. 183). If p(a) < 1 and n is a positive integer then the binomial series converges and its sum satisfies S(a)n = (1−a)−1. Let where q is any integer exceeding 1. Then u(a) is the sum of the first q terms of the series (2). Write and let a0, a1, a2,…be the sequence of matrices obtained by the iterative procedure Defining polynomials φ0(x), φ1(x), φ2(x),…inductively by we have aν = φν (a) and therefore aμaν = aνaμ for all 4 μ, ν. The following is proved in section 2: Theorem 1. If ρ(a) < 1 thenconverges and P(a) = S(a). Furthermore, if p(a) < r < 1, thenfor all ν, where M depends on r and a but is independent of ν and q.


Author(s):  
Noori F. Al-Mayahi ◽  
Hayder K. Mohammed

 In this paper, concepts of soft character, soft division algebra, soft ideal, soft maximal ideals are introduced .Soft Spectral Radius Formula are introduced and proved, some properties of Soft gelfand algebra are proved.


Author(s):  
E. S. Barnes

Letbe n linear forms with real coefficients and determinant Δ = ∥ aij∥ ≠ 0; and denote by M(X) the lower bound of | X1X2 … Xn| over all integer sets (u) ≠ (0). It is well known that γn, the upper bound of M(X)/|Δ| over all sets of forms Xi, is finite, and the value of γn has been determined when n = 2 and n = 3.


1975 ◽  
Vol 145 (2) ◽  
pp. 157-161 ◽  
Author(s):  
M. R. F. Smyth ◽  
T. T. West

1972 ◽  
Vol 37 (4) ◽  
pp. 711-715 ◽  
Author(s):  
Krister Segerberg

Let ⊥, →, and □ be primitive, and let us have a countable supply of propositional letters. By a (modal) logic we understand a proper subset of the set of all formulas containing every tautology and being closed under modus ponens and substitution. A logic is regular if it contains every instance of □A ∧ □B ↔ □(A ∧ B) and is closed under the ruleA regular logic is normal if it contains □⊤. The smallest regular logic we denote by C (the same as Lemmon's C2), the smallest normal one by K. If L and L' are logics and L ⊆ L′, then L is a sublogic of L', and L' is an extension of L; properly so if L ≠ L'. A logic is quasi-regular (respectively, quasi-normal) if it is an extension of C (respectively, K).A logic is Post complete if it has no proper extension. The Post number, denoted by p(L), is the number of Post complete extensions of L. Thanks to Lindenbaum, we know thatThere is an obvious upper bound, too:Furthermore,.


Sign in / Sign up

Export Citation Format

Share Document