Some spectral properties of Aα-matrix

2019 ◽  
Vol 11 (06) ◽  
pp. 1950070
Author(s):  
Shuang Zhang ◽  
Yan Zhu

For a real number [Formula: see text], the [Formula: see text]-matrix of a graph [Formula: see text] is defined to be [Formula: see text] where [Formula: see text] and [Formula: see text] are the adjacency matrix and degree diagonal matrix of [Formula: see text], respectively. The [Formula: see text]-spectral radius of [Formula: see text], denoted by [Formula: see text], is the largest eigenvalue of [Formula: see text]. In this paper, we consider the upper bound of the [Formula: see text]-spectral radius [Formula: see text], also we give some upper bounds for the second largest eigenvalue of [Formula: see text]-matrix.

10.37236/212 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
László Babai ◽  
Barry Guiduli

Let $G$ be a graph on $n$ vertices with spectral radius $\lambda$ (this is the largest eigenvalue of the adjacency matrix of $G$). We show that if $G$ does not contain the complete bipartite graph $K_{t ,s}$ as a subgraph, where $2\le t \le s$, then $$\lambda \le \Big((s-1)^{1/t }+o(1)\Big)n^{1-1/t }$$ for fixed $t$ and $s$ while $n\to\infty$. Asymptotically, this bound matches the Kővári-Turán-Sós upper bound on the average degree of $G$ (the Zarankiewicz problem).


2011 ◽  
Vol 03 (02) ◽  
pp. 185-191 ◽  
Author(s):  
YA-HONG CHEN ◽  
RONG-YING PAN ◽  
XIAO-DONG ZHANG

The signless Laplacian matrix of a graph is the sum of its degree diagonal and adjacency matrices. In this paper, we present a sharp upper bound for the spectral radius of the adjacency matrix of a graph. Then this result and other known results are used to obtain two new sharp upper bounds for the signless Laplacian spectral radius. Moreover, the extremal graphs which attain an upper bound are characterized.


2020 ◽  
Vol 36 (36) ◽  
pp. 214-227 ◽  
Author(s):  
Zhen Lin ◽  
Lianying Miao ◽  
Shu-Guang Guo

Let $G$ be a simple undirected graph. For any real number $\alpha \in[0,1]$, Nikiforov defined the $A_{\alpha}$-matrix of $G$ as $A_{\alpha}(G)=\alpha D(G)+(1-\alpha)A(G)$, where $A(G)$ and $D(G)$ are the adjacency matrix and the degree diagonal matrix of $G$, respectively. The $A_{\alpha}$-spread of a graph is defined as the difference between the largest eigenvalue and the smallest eigenvalue of the associated $A_{\alpha}$-matrix. In this paper, some lower and upper bounds on $A_{\alpha}$-spread are obtained, which extend the results of $A$-spread and $Q$-spread. Moreover, the trees with the minimum and the maximum $A_{\alpha}$-spread are determined, respectively.


10.37236/431 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Hongliang Lu

Let $r$ and $m$ be two integers such that $r\geq m$. Let $H$ be a graph with order $|H|$, size $e$ and maximum degree $r$ such that $2e\geq |H|r-m$. We find a best lower bound on spectral radius of graph $H$ in terms of $m$ and $r$. Let $G$ be a connected $r$-regular graph of order $|G|$ and $ k < r$ be an integer. Using the previous results, we find some best upper bounds (in terms of $r$ and $k$) on the third largest eigenvalue that is sufficient to guarantee that $G$ has a $k$-factor when $k|G|$ is even. Moreover, we find a best bound on the second largest eigenvalue that is sufficient to guarantee that $G$ is $k$-critical when $k|G|$ is odd. Our results extend the work of Cioabă, Gregory and Haemers [J. Combin. Theory Ser. B, 1999] who obtained such results for 1-factors.


Mathematics ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1668
Author(s):  
Eber Lenes ◽  
Exequiel Mallea-Zepeda ◽  
Jonnathan Rodríguez

Let G be a graph, for any real 0≤α≤1, Nikiforov defines the matrix Aα(G) as Aα(G)=αD(G)+(1−α)A(G), where A(G) and D(G) are the adjacency matrix and diagonal matrix of degrees of the vertices of G. This paper presents some extremal results about the spectral radius ρα(G) of the matrix Aα(G). In particular, we give a lower bound on the spectral radius ρα(G) in terms of order and independence number. In addition, we obtain an upper bound for the spectral radius ρα(G) in terms of order and minimal degree. Furthermore, for n>l>0 and 1≤p≤⌊n−l2⌋, let Gp≅Kl∨(Kp∪Kn−p−l) be the graph obtained from the graphs Kl and Kp∪Kn−p−l and edges connecting each vertex of Kl with every vertex of Kp∪Kn−p−l. We prove that ρα(Gp+1)<ρα(Gp) for 1≤p≤⌊n−l2⌋−1.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Yajing Wang ◽  
Yubin Gao

Spectral graph theory plays an important role in engineering. Let G be a simple graph of order n with vertex set V=v1,v2,…,vn. For vi∈V, the degree of the vertex vi, denoted by di, is the number of the vertices adjacent to vi. The arithmetic-geometric adjacency matrix AagG of G is defined as the n×n matrix whose i,j entry is equal to di+dj/2didj if the vertices vi and vj are adjacent and 0 otherwise. The arithmetic-geometric spectral radius and arithmetic-geometric energy of G are the spectral radius and energy of its arithmetic-geometric adjacency matrix, respectively. In this paper, some new upper bounds on arithmetic-geometric energy are obtained. In addition, we present the Nordhaus–Gaddum-type relations for arithmetic-geometric spectral radius and arithmetic-geometric energy and characterize corresponding extremal graphs.


2016 ◽  
Vol 31 ◽  
pp. 335-361
Author(s):  
Xue Du ◽  
Lingsheng Shi

The spectral radius of a graph is the largest eigenvalue of the adjacency matrix of the graph. Let $T^*(n,\Delta ,l)$ be the tree which minimizes the spectral radius of all trees of order $n$ with exactly $l$ vertices of maximum degree $\Delta $. In this paper, $T^*(n,\Delta ,l)$ is determined for $\Delta =3$, and for $l\le 3$ and $n$ large enough. It is proven that for sufficiently large $n$, $T^*(n,3,l)$ is a caterpillar with (almost) uniformly distributed legs, $T^*(n,\Delta ,2)$ is a dumbbell, and $T^*(n,\Delta ,3)$ is a tree consisting of three distinct stars of order $\Delta $ connected by three disjoint paths of (almost) equal length from their centers to a common vertex. The unique tree with the largest spectral radius among all such trees is also determined. These extend earlier results of Lov\' asz and Pelik\'an, Simi\' c and To\u si\' c, Wu, Yuan and Xiao, and Xu, Lin and Shu.


10.37236/956 ◽  
2007 ◽  
Vol 14 (1) ◽  
Author(s):  
Sebastian M. Cioabă

Let $G$ be an irregular graph on $n$ vertices with maximum degree $\Delta$ and diameter $D$. We show that $$ \Delta-\lambda_1>{1\over nD}, $$ where $\lambda_1$ is the largest eigenvalue of the adjacency matrix of $G$. We also study the effect of adding or removing few edges on the spectral radius of a regular graph.


Sign in / Sign up

Export Citation Format

Share Document