Generalized translations associated with an unbounded self-adjoint operator

1986 ◽  
Vol 99 (3) ◽  
pp. 519-528 ◽  
Author(s):  
B. Fishel

Delsarte [2], Povzner [9], Levitan [8], Leblanc [7], Dunford and Schwartz [3] (p. 1626) and Hutson and Pym [5] have discussed generalized translation operators (GTO) ‘associating with a differential operator’. The latter authors have also considered the topic in an abstract setting-the GTO ‘associates’ with a compact operator in a normed space. GTO are to have properties generalizing those of the translation operators defined by members of a group on a vector space E of functions defined on the group:(πεE, s and t are group elements). In the case of a locally compact topological group the integration spaces E = L1,L2,L∞, for a Haar measure of the group, are of especial interest.

1958 ◽  
Vol 11 (2) ◽  
pp. 71-77 ◽  
Author(s):  
J. H. Williamson

Let G be a locally compact topological group, with left-invariant Haar measure. If L1(G) is the usual class of complex functions which are integrable with respect to this measure, and μ is any bounded Borel measure on G, then the convolution-product μ⋆f, defined for any f in Li byis again in L1, and


1984 ◽  
Vol 96 (3) ◽  
pp. 437-445 ◽  
Author(s):  
M. McCrudden

For any locally compact topological group G let M(G) denote the topological semigroup of all probability (Borel) measures on G, furnished with the weak topology and with convolution as the multiplication. A Gauss semigroup on G is a homomorphism t→ μt of the strictly positive reals (under addition) into M(G) such that(i) no μt is a point mesaure,(ii) for each neighbourhood V of 1 in G we have


Author(s):  
M. McCrudden

Let G be a locally compact topological group, and let μ be the left Haar measure on G, with μ the corresponding outer measure. If R' denotes the non-negative extended real numbers, B (G) the Borel subsets of G, and V = {μ(C):C ∈ B(G)}, then we can define ΦG: V × V → R' bywhere AB denotes the product set of A and B in G. Then clearlyso that a knowledge of ΦG will give us some idea of how the outer measure of the product set AB compares with the measures of the sets A and B.


2008 ◽  
Vol 78 (1) ◽  
pp. 171-176 ◽  
Author(s):  
JANUSZ BRZDȨK

AbstractWe give some general results concerning continuity of measurable homomorphisms of topological groups. As a consequence we show that a Christensen measurable homomorphism of a Polish abelian group into a locally compact topological group is continuous. We also obtain similar results for the universally measurable homomorphisms and the homomorphisms that have the Baire property.


Author(s):  
Don B. Hinton ◽  
Roger T. Lewis

Let l be the differential operator of order 2n defined bywhere the coefficients are real continuous functions and pn > 0. The formally self-adjoint operator l determines a minimal closed symmetric linear operator L0 in the Hilbert space L2 (0, ∞) with domain dense in L2 (0, ∞) ((4), § 17). The operator L0 has a self-adjoint extension L which is not unique, but all such L have the same continuous spectrum ((4), § 19·4). We are concerned here with conditions on the pi which will imply that the spectrum of such an L is bounded below and discrete.


2016 ◽  
Vol 17 (1) ◽  
pp. 51
Author(s):  
Maddalena Bonanzinga ◽  
Maria Vittoria Cuzzupè

<p style="margin: 0px;">In [A.V. Arhangel'skii and J. van Mill, On topological groups with a first-countable remainder, Top. Proc. <span id="OBJ_PREFIX_DWT1099_com_zimbra_phone" class="Object">42 (2013), 157-163</span>] it is proved that the character of a non-locally compact topological group with a first countable remainder doesn't exceed $\omega_1$ and a non-locally compact topological group of character $\omega_1$ having a compactification whose reminder is first countable is given. We generalize these results in the general case of an arbitrary infinite cardinal k.</p><p style="margin: 0px;"> </p>


1971 ◽  
Vol 23 (3) ◽  
pp. 413-420 ◽  
Author(s):  
T. H. McH. Hanson

In [2] we find the definition of a locally compact group with zero as a locally compact Hausdorff topological semigroup, S, which contains a non-isolated point, 0, such that G = S – {0} is a group. Hofmann shows in [2] that 0 is indeed a zero for S, G is a locally compact topological group, and the unit, 1, of G is the unit of S. We are to study actions of S and G on spaces, and the reader is referred to [4] for the terminology of actions.If X is a space (all are assumed Hausdorff) and A ⊂ X, A* denotes the closure of A. If {xρ} is a net in X, we say limρxρ = ∞ in X if {xρ} has no subnet which converges in X.


1996 ◽  
Vol 48 (6) ◽  
pp. 1273-1285 ◽  
Author(s):  
Tianxuan Miao

AbstractLet G be a locally compact topological group. A number of characterizations are given of the class of compact groups in terms of the geometric properties such as Radon-Nikodym property, Dunford-Pettis property and Schur property of Ap(G), and the properties of the multiplication operator on PFp(G). We extend and improve several results of Lau and Ülger [17] to Ap(G) and Bp(G) for arbitrary p.


Sign in / Sign up

Export Citation Format

Share Document