On the class number of the lpth cyclotomic number field

1991 ◽  
Vol 109 (2) ◽  
pp. 263-276
Author(s):  
Norikata Nakagoshi

The first factor of the class number of a cyclotomic number field can be obtainable by the analytic class number formula and there are some tables which show the decompositions of the first factors into primes. But, using just the analytic formula, we cannot tell what kinds of primes will appear as the factors of the class number of a given cyclotomic number field, except for those of the genus number, or the irregular primes. It is significant to find in advance the prime factors, particularly those prime to the degree of the field. For instance, in the table of the first factors we can pick out some pairs (l, p) of two odd primes l and p such that the class number of each lpth cyclotomic number field is divisible by l even if p 1 (mod l). If p ≡ (mod l) for l ≥ 5 or p ≡ 1 (mod 32) for l = 3, then it is easy from the outset to achieve our intention of finding the factor l using the genus number formula. Otherwise it seems to be difficult. We wish to make it clear algebraically why the class number has the prime factor l.

2016 ◽  
Vol 19 (1) ◽  
pp. 217-228 ◽  
Author(s):  
Claus Fieker ◽  
Yinan Zhang

We propose an algorithm to verify the$p$-part of the class number for a number field$K$, provided$K$is totally real and an abelian extension of the rational field$\mathbb{Q}$, and$p$is any prime. On fields of degree 4 or higher, this algorithm has been shown heuristically to be faster than classical algorithms that compute the entire class number, with improvement increasing with larger field degrees.


2008 ◽  
Vol 17 (10) ◽  
pp. 1199-1221 ◽  
Author(s):  
TERUHISA KADOKAMI ◽  
YASUSHI MIZUSAWA

Based on the analogy between links and primes, we present an analogue of the Iwasawa's class number formula in a Zp-extension for the p-homology groups of pn-fold cyclic covers of a link in a rational homology 3-sphere. We also describe the associated Iwasawa invariants precisely for some examples and discuss analogies with the number field case.


1991 ◽  
Vol 124 ◽  
pp. 133-144 ◽  
Author(s):  
Masanori Morishita

As an interpretation and a generalization of Gauss’ genus theory on binary quadratic forms in the language of arithmetic of algebraic tori, Ono [02] established an equality between a kind of “Euler number E(K/k)” for a finite Galois extension K/k of algebraic number fields and other arithmetical invariants associated to K/k. His proof depended on his Tamagawa number formula [01] and Shyr’s formula [Sh] which follows from the analytic class number formula of a torus. Later, two direct proofs were given by Katayama [K] and Sasaki [Sa].


1994 ◽  
Vol 66 (3) ◽  
pp. 245-260 ◽  
Author(s):  
Franz Lemmermeyer

Sign in / Sign up

Export Citation Format

Share Document