The finite inner automorphism groups of division rings

1995 ◽  
Vol 118 (2) ◽  
pp. 207-213 ◽  
Author(s):  
M. Shirvani

Let G be a finite group of automorphisms of an associative ring R. Then the inner automorphisms (x↦ u−1xu = xu, for some unit u of R) contained in G form a normal subgroup G0 of G. In general, the Galois theory associated with the outer automorphism group G/G0 is quit well behaved (e.g. [7], 2·3–2·7, 2·10), while little group-theoretic restriction on the structure of G/G0 may be expected (even when R is a commutative field). The structure of the inner automorphism groups G0 does not seem to have received much attention so far. Here we classify the finite groups of inner automorphisms of division rings, i.e. the finite subgroups of PGL (1, D), where D is a division ring. Such groups also arise in the study of finite collineation groups of projective spaces (via the fundamental theorem of projective geometry, cf. [1], 2·26), and provide examples of finite groups having faithful irreducible projective representations over fields.

1983 ◽  
Vol 26 (3) ◽  
pp. 297-306 ◽  
Author(s):  
K. D. Magill ◽  
P. R. Misra ◽  
U. B. Tewari

In [3] we initiated our study of the automorphism groups of a certain class of near-rings. Specifically, let P be any complex polynomial and let P denote the near-ring of all continuous selfmaps of the complex plane where addition of functions is pointwise and the product fg of two functions f and g in P is defined by fg=f∘P∘g. The near-ring P is referred to as a laminated near-ring with laminating element P. In [3], we characterised those polynomials P(z)=anzn + an−1zn−1 +…+a0 for which Aut P is a finite group. We are able to show that Aut P is finite if and only if Deg P≧3 and ai ≠ 0 for some i ≠ 0, n. In addition, we were able to completely determine those infinite groups which occur as automorphism groups of the near-rings P. There are exactly three of them. One is GL(2) the full linear group of all real 2×2 nonsingular matrices and the other two are subgroups of GL(2). In this paper, we begin our study of the finite automorphism groups of the near-rings P. We get a result which, in contrast to the situation for the infinite automorphism groups, shows that infinitely many finite groups occur as automorphism groups of the near-rings under consideration. In addition to this and other results, we completely determine Aut P when the coefficients of P are real and Deg P = 3 or 4.


2017 ◽  
Vol 24 (02) ◽  
pp. 351-360
Author(s):  
Zhengxing Li ◽  
Hongwei Gao

Let G be a finite group. It is proved that any class-preserving Coleman automorphism of G is an inner automorphism whenever G belongs to one of the following two classes of groups: (1) CN-groups, i.e., groups in which the centralizer of any element is nilpotent; (2) CIT-groups, i.e., groups of even order in which the centralizer of any involution is a 2-group. In particular, the normalizer conjecture holds for both CN-groups and CIT-groups. Additionally, some other results are also obtained.


2013 ◽  
Vol 88 (2) ◽  
pp. 243-249 ◽  
Author(s):  
FIRUZ KAMALOV

AbstractWe study the space of irreducible representations of a crossed product ${C}^{\ast } $-algebra ${\mathop{A\rtimes }\nolimits}_{\sigma } G$, where $G$ is a finite group. We construct a space $\widetilde {\Gamma } $ which consists of pairs of irreducible representations of $A$ and irreducible projective representations of subgroups of $G$. We show that there is a natural action of $G$ on $\widetilde {\Gamma } $ and that the orbit space $G\setminus \widetilde {\Gamma } $ corresponds bijectively to the dual of ${\mathop{A\rtimes }\nolimits}_{\sigma } G$.


2007 ◽  
Vol 17 (05n06) ◽  
pp. 1085-1106 ◽  
Author(s):  
G. MASHEVITZKY ◽  
B. I. PLOTKIN

Let U be a universal algebra. An automorphism α of the endomorphism semigroup of U defined by α(φ) = sφs-1 for a bijection s : U → U is called a quasi-inner automorphism. We characterize bijections on U defining such automorphisms. For this purpose, we introduce the notion of a pre-automorphism of U. In the case when U is a free universal algebra, the pre-automorphisms are precisely the well-known weak automorphisms of U. We also provide different characterizations of quasi-inner automorphisms of endomorphism semigroups of free universal algebras and reveal their structure. We apply obtained results for describing the structure of groups of automorphisms of categories of free universal algebras, isomorphisms between semigroups of endomorphisms of free universal algebras, automorphism groups of endomorphism semigroups of free Lie algebras etc.


1985 ◽  
Vol 28 (1) ◽  
pp. 84-90
Author(s):  
Jay Zimmerman

AbstractThe object of this paper is to exhibit an infinite set of finite semisimple groups H, each of which is the automorphism group of some infinite group, but of no finite group. We begin the construction by choosing a finite simple group S whose outer automorphism group and Schur multiplier possess certain specified properties. The group H is a certain subgroup of Aut S which contains S. For example, most of the PSL's over a non-prime finite field are candidates for S, and in this case, H is generated by all of the inner, diagonal and graph automorphisms of S.


Author(s):  
CHUN-NIP LEE

Let Γ be a discrete group and p be a prime. One of the fundamental results in group cohomology is that H*(Γ, [ ]p) is a finitely generated [ ]p-algebra if Γ is a finite group [8, 24]. The purpose of this paper is to study the analogous question when Γ is no longer finite.Recall that Γ is said to have finite virtual cohomological dimension (vcd) if there exists a finite index torion-free subgroup Γ′ of Γ such that Γ′ has finite cohomological dimension over ℤ [4]. By definition vcd Γ is the cohomological dimension of Γ′. It is easy to see that the mod p cohomology ring of a finite vcd-group does not have to be a finitely generated [ ]p-algebra in general. For instance, if Γ is a countably infinite free product of ℤ's, then H1(Γ, [ ]p) is not finite dimensional over [ ]p. The three most important classes of examples of finite vcd-groups in which the mod p cohomology ring is a finitely generated [ ]p-algebra are arithmetic groups [2], mapping class groups [9, 10] and outer automorphism groups of free groups [5]. In each of these examples, the proof of finite generation involves the construction of a specific Γ-complex with appropriate finiteness conditions. These constructions should be regarded as utilizing the geometry underlying these special classes of groups. In contrast, the result we prove will depend only on the algebraic structure of the group Γ.


2011 ◽  
Vol 18 (04) ◽  
pp. 663-674 ◽  
Author(s):  
A. R. Moghaddamfar ◽  
S. Rahbariyan

The degree pattern of a finite group G was introduced in [10]. We say that G is k-fold OD-characterizable if there exist exactly k non-isomorphic finite groups with the same order and same degree pattern as G. When a group G is 1-fold OD-characterizable, we simply call it OD-characterizable. In recent years, a number of authors attempt to characterize finite groups by their order and degree pattern. In this article, we first show that for the primes p=53, 61, 67, 73, 79, 83, 89, 97, the alternating groups Ap+3 are OD-characterizable, while the symmetric groups Sp+3 are 3-fold OD-characterizable. Next, we show that the automorphism groups Aut (O7(3)) and Aut (S6(3)) are 6-fold OD-characterizable. It is worth mentioning that the prime graphs associated with all these groups are connected.


2021 ◽  
Vol 9 ◽  
Author(s):  
George Glauberman ◽  
Justin Lynd

Abstract A rigid automorphism of a linking system is an automorphism that restricts to the identity on the Sylow subgroup. A rigid inner automorphism is conjugation by an element in the center of the Sylow subgroup. At odd primes, it is known that each rigid automorphism of a centric linking system is inner. We prove that the group of rigid outer automorphisms of a linking system at the prime $2$ is elementary abelian and that it splits over the subgroup of rigid inner automorphisms. In a second result, we show that if an automorphism of a finite group G restricts to the identity on the centric linking system for G, then it is of $p'$ -order modulo the group of inner automorphisms, provided G has no nontrivial normal $p'$ -subgroups. We present two applications of this last result, one to tame fusion systems.


Sign in / Sign up

Export Citation Format

Share Document