The Hausdorff dimension of Julia sets of entire functions II

1996 ◽  
Vol 119 (3) ◽  
pp. 513-536 ◽  
Author(s):  
Gwyneth M. Stallard

AbstractLetfbe a transcendental entire function such that the finite singularities of f−1lie in a bounded set. We show that the Hausdorff dimension of the Julia set of such a function is strictly greater than one.

1997 ◽  
Vol 122 (2) ◽  
pp. 223-244 ◽  
Author(s):  
GWYNETH M. STALLARD

It is known that, for a transcendental entire function f, the Hausdorff dimension of the Julia set of f satisfies 1[les ]dim J(f)[les ]2. In this paper we introduce a family of transcendental entire functions fp, K for which the set {dim J(fp, K)[ratio ]0<p, K<∞} has infemum 1 and supremum 2.


2012 ◽  
Vol 33 (4) ◽  
pp. 1146-1161 ◽  
Author(s):  
J. W. OSBORNE

AbstractWe show that if the Julia set of a transcendental entire function is locally connected, then it takes the form of a spider’s web in the sense defined by Rippon and Stallard. In the opposite direction, we prove that a spider’s web Julia set is always locally connected at a dense subset of buried points. We also show that the set of buried points (the residual Julia set) can be a spider’s web.


2020 ◽  
Vol 6 (3-4) ◽  
pp. 459-493
Author(s):  
Vasiliki Evdoridou ◽  
Lasse Rempe ◽  
David J. Sixsmith

AbstractSuppose that f is a transcendental entire function, $$V \subsetneq {\mathbb {C}}$$ V ⊊ C is a simply connected domain, and U is a connected component of $$f^{-1}(V)$$ f - 1 ( V ) . Using Riemann maps, we associate the map $$f :U \rightarrow V$$ f : U → V to an inner function $$g :{\mathbb {D}}\rightarrow {\mathbb {D}}$$ g : D → D . It is straightforward to see that g is either a finite Blaschke product, or, with an appropriate normalisation, can be taken to be an infinite Blaschke product. We show that when the singular values of f in V lie away from the boundary, there is a strong relationship between singularities of g and accesses to infinity in U. In the case where U is a forward-invariant Fatou component of f, this leads to a very significant generalisation of earlier results on the number of singularities of the map g. If U is a forward-invariant Fatou component of f there are currently very few examples where the relationship between the pair (f, U) and the function g has been calculated. We study this relationship for several well-known families of transcendental entire functions. It is also natural to ask which finite Blaschke products can arise in this manner, and we show the following: for every finite Blaschke product g whose Julia set coincides with the unit circle, there exists a transcendental entire function f with an invariant Fatou component such that g is associated with f in the above sense. Furthermore, there exists a single transcendental entire function f with the property that any finite Blaschke product can be arbitrarily closely approximated by an inner function associated with the restriction of f to a wandering domain.


2000 ◽  
Vol 20 (6) ◽  
pp. 1577-1582 ◽  
Author(s):  
WALTER BERGWEILER ◽  
ALEXANDRE EREMENKO

We construct a transcendental entire function $f$ with $J(f)=\mathbb{C}$ such that $f$ has arbitrarily slow growth; that is, $\log |f(z)|\leq\phi(|z|)\log |z|$ for $|z|>r_0$, where $\phi$ is an arbitrary prescribed function tending to infinity.


2010 ◽  
Vol 148 (3) ◽  
pp. 531-551 ◽  
Author(s):  
WALTER BERGWEILER ◽  
BOGUSŁAWA KARPIŃSKA

AbstractWe show that if the growth of a transcendental entire function f is sufficiently regular, then the Julia set and the escaping set of f have Hausdorff dimension 2.


2015 ◽  
Vol 158 (2) ◽  
pp. 365-383 ◽  
Author(s):  
D. J. SIXSMITH

AbstractWe partition the fast escaping set of a transcendental entire function into two subsets, the maximally fast escaping set and the non-maximally fast escaping set. These sets are shown to have strong dynamical properties. We show that the intersection of the Julia set with the non-maximally fast escaping set is never empty. The proof uses a new covering result for annuli, which is of wider interest.It was shown by Rippon and Stallard that the fast escaping set has no bounded components. In contrast, by studying a function considered by Hardy, we give an example of a transcendental entire function for which the maximally and non-maximally fast escaping sets each have uncountably many singleton components.


2001 ◽  
Vol 63 (3) ◽  
pp. 367-377 ◽  
Author(s):  
I. N. Baker

Dedicated to George Szekeres on his 90th birthdayFor a transcendental entire function f let M(r) denote the maximum modulus of f(z) for |z| = r. Then A(r) = log M(r)/logr tends to infinity with r. Many properties of transcendental entire functions with sufficiently small A(r) resemble those of polynomials. However the dynamical properties of iterates of such functions may be very different. For instance in the stable set F(f) where the iterates of f form a normal family the components are preperiodic under f in the case of a polynomial; but there are transcendental functions with arbitrarily small A(r) such that F(f) has nonpreperiodic components, so called wandering components, which are bounded rings in which the iterates tend to infinity. One might ask if all small functions are like this.A striking recent result of Bergweiler and Eremenko shows that there are arbitrarily small transcendental entire functions with empty stable set—a thing impossible for polynomials. By extending the technique of Bergweiler and Eremenko, an arbitrarily small transcendental entire function is constructed such that F is nonempty, every component G of F is bounded, simply-connected and the iterates tend to zero in G. Zero belongs to an invariant component of F, so there are no wandering components. The Julia set which is the complement of F is connected and contains a dense subset of “buried’ points which belong to the boundary of no component of F. This bevaviour is impossible for a polynomial.


Author(s):  
James Waterman

Abstract We show that the Hausdorff dimension of the set of points of bounded orbit in the Julia set of a meromorphic map with a simply connected direct tract and a certain restriction on the singular values is strictly greater than one. This result is obtained by proving new results related to Wiman–Valiron theory.


2000 ◽  
Vol 20 (3) ◽  
pp. 895-910 ◽  
Author(s):  
GWYNETH M. STALLARD

Ruelle (Repellers for real analytic maps. Ergod. Th. & Dynam. Sys.2 (1982), 99–108) used results from statistical mechanics to show that, when a rational function $f$ is hyperbolic, the Hausdorff dimension of the Julia set, $\dim J(f)$, depends real analytically on $f$. We give a proof of the fact that $\dim J(f)$ is a continuous function of $f$ that does not depend on results from statistical mechanics and we show that this result can be extended to a class of transcendental meromorphic functions. This enables us to show that, for each $d \in (0,1)$, there exists a transcendental meromorphic function $f$ with $\dim J(f) = d$.


2011 ◽  
Vol 33 (1) ◽  
pp. 284-302 ◽  
Author(s):  
JÖRN PETER

AbstractWe show that the escaping sets and the Julia sets of bounded-type transcendental entire functions of order ρ become ‘smaller’ as ρ→∞. More precisely, their Hausdorff measures are infinite with respect to the gauge function hγ(t)=t2g(1/t)γ, where g is the inverse of a linearizer of some exponential map and γ≥(log ρ(f)+K1)/c, but for ρ large enough, there exists a function fρ of bounded type with order ρ such that the Hausdorff measures of the escaping set and the Julia set of fρ with respect to hγ′ are zero whenever γ′ ≤(log ρ−K2)/c.


Sign in / Sign up

Export Citation Format

Share Document