scholarly journals Hilbert schemes of points on some K3 surfaces and Gieseker stable bundles

1996 ◽  
Vol 120 (2) ◽  
pp. 255-261 ◽  
Author(s):  
Ugo Bruzzo ◽  
Antony Maciocia

AbstractBy using a Fourier-Mukai transform for sheaves on K3 surfaces we show that for a wide class of K3 surfaces X the Hilbert schemes Hilbn(X) can be identified for all n ≥ 1 with moduli spaces of Gieseker stable vector bundles on X. We also introduce a new Fourier-Mukai type transform for such surfaces.

1998 ◽  
Vol 150 ◽  
pp. 85-94 ◽  
Author(s):  
Hoil Kim

Abstract.We show that the image of the moduli space of stable bundles on an Enriques surface by the pull back map is a Lagrangian subvariety in the moduli space of stable bundles, which is a symplectic variety, on the covering K3 surface. We also describe singularities and some other features of it.


Author(s):  
Fabian Reede ◽  
Ziyu Zhang

AbstractLet X be a projective K3 surfaces. In two examples where there exists a fine moduli space M of stable vector bundles on X, isomorphic to a Hilbert scheme of points, we prove that the universal family $${\mathcal {E}}$$ E on $$X\times M$$ X × M can be understood as a complete flat family of stable vector bundles on M parametrized by X, which identifies X with a smooth connected component of some moduli space of stable sheaves on M.


1980 ◽  
Vol 77 ◽  
pp. 47-60 ◽  
Author(s):  
Hiroshi Umemura

Let X be a projective non-singular variety and H an ample line bundle on X. The moduli space of H-stable vector bundles exists by Maruyama [4]. If X is a curve defined over C, the structure of the moduli space (or its compactification) M(X, d, r) of stable vector bundles of degree d and rank r on X is studied in detail. It is known that the variety M(X, d, r) is irreducible. Let L be a line bundle of degree d and let M(X, L, r) denote the closed subvariety of M(X, d, r) consisting of all the stable bundles E with det E = L.


2016 ◽  
Vol 59 (4) ◽  
pp. 865-877
Author(s):  
Sarbeswar Pal

AbstractLet X be a smooth projective curve of arbitrary genus g > 3 over the complex numbers. In this short note we will show that the moduli space of rank 2 stable vector bundles with determinant isomorphic to Lx , where Lx denotes the line bundle corresponding to a point x ∊ X, is isomorphic to a certain variety of lines in the moduli space of S-equivalence classes of semistable bundles of rank 2 with trivial determinant.


2010 ◽  
Vol 21 (04) ◽  
pp. 497-522 ◽  
Author(s):  
INDRANIL BISWAS ◽  
MAINAK PODDAR

Let X be a compact connected Riemann surface of genus at least two. Let r be a prime number and ξ → X a holomorphic line bundle such that r is not a divisor of degree ξ. Let [Formula: see text] denote the moduli space of stable vector bundles over X of rank r and determinant ξ. By Γ we will denote the group of line bundles L over X such that L⊗r is trivial. This group Γ acts on [Formula: see text] by the rule (E, L) ↦ E ⊗ L. We compute the Chen–Ruan cohomology of the corresponding orbifold.


2008 ◽  
Vol 144 (6) ◽  
pp. 1403-1428 ◽  
Author(s):  
David Ben-Zvi ◽  
Thomas Nevins

AbstractWe present a simple description of moduli spaces of torsion-free 𝒟-modules (𝒟-bundles) on general smooth complex curves, generalizing the identification of the space of ideals in the Weyl algebra with Calogero–Moser quiver varieties. Namely, we show that the moduli of 𝒟-bundles form twisted cotangent bundles to moduli of torsion sheaves on X, answering a question of Ginzburg. The corresponding (untwisted) cotangent bundles are identified with moduli of perverse vector bundles on T*X, which contain as open subsets the moduli of framed torsion-free sheaves (the Hilbert schemes T*X[n] in the rank-one case). The proof is based on the description of the derived category of 𝒟-modules on X by a noncommutative version of the Beilinson transform on P1.


2002 ◽  
Vol 165 ◽  
pp. 43-69 ◽  
Author(s):  
Laura Costa ◽  
Rosa M. Miro-Ŕoig

Let X be a smooth rational surface. In this paper, we prove the rationality of the moduli space MX,L(2; c1; c2) of rank two L-stable vector bundles E on X with det (E) = c1 ∈ Pic(X) and c2(E) = c2 ≫ 0.


Sign in / Sign up

Export Citation Format

Share Document