closed subvariety
Recently Published Documents


TOTAL DOCUMENTS

10
(FIVE YEARS 1)

H-INDEX

1
(FIVE YEARS 0)

2021 ◽  
Vol 9 ◽  
Author(s):  
Alex Chirvasitu ◽  
Ryo Kanda ◽  
S. Paul Smith

Abstract The elliptic algebras in the title are connected graded $\mathbb {C}$ -algebras, denoted $Q_{n,k}(E,\tau )$ , depending on a pair of relatively prime integers $n>k\ge 1$ , an elliptic curve E and a point $\tau \in E$ . This paper examines a canonical homomorphism from $Q_{n,k}(E,\tau )$ to the twisted homogeneous coordinate ring $B(X_{n/k},\sigma ',\mathcal {L}^{\prime }_{n/k})$ on the characteristic variety $X_{n/k}$ for $Q_{n,k}(E,\tau )$ . When $X_{n/k}$ is isomorphic to $E^g$ or the symmetric power $S^gE$ , we show that the homomorphism $Q_{n,k}(E,\tau ) \to B(X_{n/k},\sigma ',\mathcal {L}^{\prime }_{n/k})$ is surjective, the relations for $B(X_{n/k},\sigma ',\mathcal {L}^{\prime }_{n/k})$ are generated in degrees $\le 3$ and the noncommutative scheme $\mathrm {Proj}_{nc}(Q_{n,k}(E,\tau ))$ has a closed subvariety that is isomorphic to $E^g$ or $S^gE$ , respectively. When $X_{n/k}=E^g$ and $\tau =0$ , the results about $B(X_{n/k},\sigma ',\mathcal {L}^{\prime }_{n/k})$ show that the morphism $\Phi _{|\mathcal {L}_{n/k}|}:E^g \to \mathbb {P}^{n-1}$ embeds $E^g$ as a projectively normal subvariety that is a scheme-theoretic intersection of quadric and cubic hypersurfaces.



2020 ◽  
Vol 296 (3-4) ◽  
pp. 1645-1672 ◽  
Author(s):  
Ariyan Javanpeykar ◽  
Ljudmila Kamenova

Abstract Demailly’s conjecture, which is a consequence of the Green–Griffiths–Lang conjecture on varieties of general type, states that an algebraically hyperbolic complex projective variety is Kobayashi hyperbolic. Our aim is to provide evidence for Demailly’s conjecture by verifying several predictions it makes. We first define what an algebraically hyperbolic projective variety is, extending Demailly’s definition to (not necessarily smooth) projective varieties over an arbitrary algebraically closed field of characteristic zero, and we prove that this property is stable under extensions of algebraically closed fields. Furthermore, we show that the set of (not necessarily surjective) morphisms from a projective variety Y to a projective algebraically hyperbolic variety X that map a fixed closed subvariety of Y onto a fixed closed subvariety of X is finite. As an application, we obtain that $${{\,\mathrm{Aut}\,}}(X)$$ Aut ( X ) is finite and that every surjective endomorphism of X is an automorphism. Finally, we explore “weaker” notions of hyperbolicity related to boundedness of moduli spaces of maps, and verify similar predictions made by the Green–Griffiths–Lang conjecture on hyperbolic projective varieties.



Author(s):  
Naoki Koseki

Abstract Let $f \colon X \to Y$ be the blow-up of a smooth projective variety $Y$ along its codimension two smooth closed subvariety. In this paper, we show that the moduli space of stable sheaves on $X$ and $Y$ are connected by a sequence of flip-like diagrams. The result is a higher dimensional generalization of the result of Nakajima and Yoshioka, which is the case of $\dim Y=2$. As an application of our general result, we study the birational geometry of the Hilbert scheme of two points.



2017 ◽  
Vol 28 (11) ◽  
pp. 1750078
Author(s):  
Kiryong Chung ◽  
Sanghyeon Lee

Let [Formula: see text] be a smooth projective curve with genus [Formula: see text]. Let [Formula: see text] be the moduli space of stable rank two vector bundles on [Formula: see text] with a fixed determinant [Formula: see text] for [Formula: see text]. In this paper, as a generalization of Kiem and Castravet’s works, we study the stable maps in [Formula: see text] with genus [Formula: see text] and degree [Formula: see text]. Let [Formula: see text] be a natural closed subvariety of [Formula: see text] which parametrizes stable vector bundles with a fixed subbundle [Formula: see text] for a line bundle [Formula: see text] on [Formula: see text]. We describe the stable map space [Formula: see text]. It turns out that the space [Formula: see text] consists of two irreducible components. One of them parameterizes smooth rational cubic curves and the other parameterizes the union of line and smooth conics.



2017 ◽  
Vol 60 (3) ◽  
pp. 478-483 ◽  
Author(s):  
Jim Carrell ◽  
Kiumars Kaveh

AbstractLet G denote a reductive algebraic group over C and x a nilpotent element of its Lie algebra 𝔤. The Springer variety Bx is the closed subvariety of the flag variety B of G parameterizing the Borel subalgebras of 𝔤 containing x. It has the remarkable property that the Weyl group W of G admits a representation on the cohomology of Bx even though W rarely acts on Bx itself. Well-known constructions of this action due to Springer and others use technical machinery from algebraic geometry. The purpose of this note is to describe an elementary approach that gives this action when x is what we call parabolic-surjective. The idea is to use localization to construct an action of W on the equivariant cohomology algebra H*S (Bx), where S is a certain algebraic subtorus of G. This action descends to H*(Bx) via the forgetful map and gives the desired representation. The parabolic-surjective case includes all nilpotents of type A and, more generally, all nilpotents for which it is known that W acts on H*S (Bx) for some torus S. Our result is deduced from a general theorem describing when a group action on the cohomology of the ûxed point set of a torus action on a space lifts to the full cohomology algebra of the space.



2017 ◽  
Vol 60 (3) ◽  
pp. 522-535 ◽  
Author(s):  
Oleksandr Iena ◽  
Alain Leytem

AbstractIn the Simpson moduli space M of semi-stable sheaves with Hilbert polynomial dm − 1 on a projective plane we study the closed subvariety M' of sheaves that are not locally free on their support. We show that for d ≥4 , it is a singular subvariety of codimension 2 in M. The blow up of M along M' is interpreted as a (partial) modification of M \ M' by line bundles (on support).



2015 ◽  
Vol 152 (5) ◽  
pp. 997-1040
Author(s):  
Kazuhiko Yamaki

The Bogomolov conjecture claims that a closed subvariety containing a dense subset of small points is a special kind of subvariety. In the arithmetic setting over number fields, the Bogomolov conjecture for abelian varieties has already been established as a theorem of Ullmo and Zhang, but in the geometric setting over function fields, it has not yet been solved completely. There are only some partial results known such as the totally degenerate case due to Gubler and our recent work generalizing Gubler’s result. The key in establishing the previous results on the Bogomolov conjecture is the equidistribution method due to Szpiro, Ullmo and Zhang with respect to the canonical measures. In this paper we exhibit the limits of this method, making an important contribution to the geometric version of the conjecture. In fact, by the crucial investigation of the support of the canonical measure on a subvariety, we show that the conjecture in full generality holds if the conjecture holds for abelian varieties which have anywhere good reduction. As a consequence, we establish a partial answer that generalizes our previous result.



1996 ◽  
Vol 48 (6) ◽  
pp. 1286-1295 ◽  
Author(s):  
Peter Russell

AbstractWe show that over a field k of characteristic zero an affine (n — 1)- space embedded as a closed subvariety in affine n-space and homogeneous for a codimension two linear torus action on is defined by the vanishing of a variable.



1983 ◽  
Vol 35 (4) ◽  
pp. 589-612 ◽  
Author(s):  
Joachim von Zur Gathen

A classical question in algebraic geometry is whether a given projection of a projective space induces an isomorphism on a given closed subvariety. To answer it, one investigates secant lines to the subvariety. There has been a lot of recent activity in this field ([12], [14],[18], [21], [23]): see [14] and [12] for references).An obvious generalization of the secant lines is provided by the secant r-planes, which intersect a given closed subvariety in r + 1 linearly independent points. The closure of the set of these secant r-planes is the secant variety, and the aim of this paper is to determine its rational equivalence class in the case of curves. There is an extensive classical literature about this problem.



1980 ◽  
Vol 77 ◽  
pp. 47-60 ◽  
Author(s):  
Hiroshi Umemura

Let X be a projective non-singular variety and H an ample line bundle on X. The moduli space of H-stable vector bundles exists by Maruyama [4]. If X is a curve defined over C, the structure of the moduli space (or its compactification) M(X, d, r) of stable vector bundles of degree d and rank r on X is studied in detail. It is known that the variety M(X, d, r) is irreducible. Let L be a line bundle of degree d and let M(X, L, r) denote the closed subvariety of M(X, d, r) consisting of all the stable bundles E with det E = L.



Sign in / Sign up

Export Citation Format

Share Document