scholarly journals Almost primes in almost all short intervals

2016 ◽  
Vol 161 (2) ◽  
pp. 247-281 ◽  
Author(s):  
JONI TERÄVÄINEN

AbstractLet Ek be the set of positive integers having exactly k prime factors. We show that almost all intervals [x, x + log1+ϵx] contain E3 numbers, and almost all intervals [x,x + log3.51x] contain E2 numbers. By this we mean that there are only o(X) integers 1 ⩽ x ⩽ X for which the mentioned intervals do not contain such numbers. The result for E3 numbers is optimal up to the ϵ in the exponent. The theorem on E2 numbers improves a result of Harman, which had the exponent 7 + ϵ in place of 3.51. We also consider general Ek numbers, and find them on intervals whose lengths approach log x as k → ∞.

Author(s):  
J. KACZOROWSKI ◽  
A. PERELLI

A classical problem in analytic number theory is the distribution in short intervals of integers with a prescribed multiplicative structure, such as primes, almost-primes, k-free numbers and others. Recently, partly due to applications to cryptology, much attention has been received by the problem of the distribution in short intervals of integers without large prime factors, see Lenstra–Pila–Pomerance [3] and section 5 of the excellent survey by Hildebrand–Tenenbaum [1].In this paper we deal with the distribution in short intervals of numbers representable as a product of a prime and integers from a given set [Sscr ], defined in terms of cardinality properties. Our results can be regarded as an extension of the above quoted results, and we will provide a comparison with such results by a specialization of the set [Sscr ].


2017 ◽  
Vol 15 (1) ◽  
pp. 1517-1529
Author(s):  
Zhao Feng

Abstract In this paper, we are able to prove that almost all integers n satisfying some necessary congruence conditions are the sum of j almost equal prime cubes with j = 7, 8, i.e., $\begin{array}{} N=p_1^3+ \ldots +p_j^3 \end{array} $ with $\begin{array}{} |p_i-(N/j)^{1/3}|\leq N^{1/3- \delta +\varepsilon} (1\leq i\leq j), \end{array} $ for some $\begin{array}{} 0 \lt \delta\leq\frac{1}{90}. \end{array} $ Furthermore, we give the quantitative relations between the length of short intervals and the size of exceptional sets.


10.37236/4909 ◽  
2016 ◽  
Vol 23 (3) ◽  
Author(s):  
Korneel Debaene

We establish the existence of an irreducible representation of $A_n$ whose dimension does not occur as the dimension of an irreducible representation of $S_n$, and vice versa. This proves a conjecture by Tong-Viet. The main ingredient in the proof is a result on large prime factors in short intervals. 


1997 ◽  
Vol 122 (2) ◽  
pp. 193-205 ◽  
Author(s):  
HONGZE LI

In 1982, Glyn Harman [2] proved that for almost all n, the interval [n, n+n(1/10)+ε] contains a prime number. By this we mean that the set of n[les ]N for which the interval does not contain a prime has measure o(N) as n→+∞. It follows from Huxley's work [6] that if θ>1/6 then there will almost always be asymptotically nθ(log n)−1 primes in the interval [n, n+nθ]. In 1983, Glyn Harman [3] pointed that for almost all n, the interval [n, n+n(1/12)+ε] contains a prime number, and meantime Heath-Brown gave the outline of this result in [5]. The exponent was reduced to 1/13 by Jia [10], 2/27 by Li [12] and 1/14 by Jia [11], and meantime N. Watt [16] got the same result. In this paper we shall prove the following result.THEOREM. For almost all n, the intervalformula herecontains a prime number.


2000 ◽  
Vol 157 ◽  
pp. 103-127 ◽  
Author(s):  
Ti Zuo Xuan

For real x ≥ y ≥ 2 and positive integers a, q, let Φ(x, y; a, q) denote the number of positive integers ≤ x, free of prime factors ≤ y and satisfying n ≡ a (mod q). By the fundamental lemma of sieve, it follows that for (a,q) = 1, Φ(x,y;a,q) = φ(q)-1, Φ(x, y){1 + O(exp(-u(log u- log2 3u- 2))) + (u = log x log y) holds uniformly in a wider ranges of x, y and q.Let χ be any character to the modulus q, and L(s, χ) be the corresponding L-function. Let be a (‘exceptional’) real character to the modulus q for which L(s, ) have a (‘exceptional’) real zero satisfying > 1 - c0/log q. In the paper, we prove that in a slightly short range of q the above first error term can be replaced by where ρ(u) is Dickman function, and ρ′(u) = dρ(u)/du.The result is an analogue of the prime number theorem for arithmetic progressions. From the result can deduce that the above first error term can be omitted, if suppose that 1 < q < (log q)A.


1992 ◽  
Vol 44 (6) ◽  
pp. 1121-1154 ◽  
Author(s):  
J. M. De Koninck ◽  
I. Kátai ◽  
A. Mercier

AbstractLet h: [0,1] → R be such that and define .In 1966, Erdős [8] proved that holds for almost all n, which by using a simple argument implies that in the case h(u) = u, for almost all n, He further obtained that, for every z > 0 and almost all n, and that where ϕ, ψ, are continuous distribution functions. Several other results concerning the normal growth of prime factors of integers were obtained by Galambos [10], [11] and by De Koninck and Galambos [6].Let χ = ﹛xm : w ∈ N﹜ be a sequence of real numbers such that limm→∞ xm = +∞. For each x ∈ χ let be a set of primes p ≤x. Denote by p(n) the smallest prime factor of n. In this paper, we investigate the number of prime divisors p of n, belonging to for which Th(n,p) > z. Given Δ < 1, we study the behaviour of the function We also investigate the two functions , where, in each case, h belongs to a large class of functions.


2020 ◽  
Vol 2020 (763) ◽  
pp. 1-24
Author(s):  
Kaisa Matomäki ◽  
Xuancheng Shao

AbstractFor a set of primes {\mathcal{P}}, let {\Psi(x;\mathcal{P})} be the number of positive integers {n\leq x} all of whose prime factors lie in {\mathcal{P}}. In this paper we classify the sets of primes {\mathcal{P}} such that {\Psi(x;\mathcal{P})} is within a constant factor of its expected value. This task was recently initiated by Granville, Koukoulopoulos and Matomäki [A. Granville, D. Koukoulopoulos and K. Matomäki, When the sieve works, Duke Math. J. 164 2015, 10, 1935–1969] and their main conjecture is proved in this paper. In particular, our main theorem implies that, if not too many large primes are sieved out in the sense that\sum_{\begin{subarray}{c}p\in\mathcal{P}\\ x^{1/v}<p\leq x^{1/u}\end{subarray}}\frac{1}{p}\geq\frac{1+\varepsilon}{u},for some {\varepsilon>0} and {v\geq u\geq 1}, then\Psi(x;\mathcal{P})\gg_{\varepsilon,v}x\prod_{\begin{subarray}{c}p\leq x\\ p\notin\mathcal{P}\end{subarray}}\bigg{(}1-\frac{1}{p}\bigg{)}.


Sign in / Sign up

Export Citation Format

Share Document