scholarly journals Dimensions of the Irreducible Representations of the Symmetric and Alternating Group

10.37236/4909 ◽  
2016 ◽  
Vol 23 (3) ◽  
Author(s):  
Korneel Debaene

We establish the existence of an irreducible representation of $A_n$ whose dimension does not occur as the dimension of an irreducible representation of $S_n$, and vice versa. This proves a conjecture by Tong-Viet. The main ingredient in the proof is a result on large prime factors in short intervals. 

1987 ◽  
Vol 107 ◽  
pp. 63-68 ◽  
Author(s):  
George Kempf

Let H be the Levi subgroup of a parabolic subgroup of a split reductive group G. In characteristic zero, an irreducible representation V of G decomposes when restricted to H into a sum V = ⊕mαWα where the Wα’s are distinct irreducible representations of H. We will give a formula for the multiplicities mα. When H is the maximal torus, this formula is Weyl’s character formula. In theory one may deduce the general formula from Weyl’s result but I do not know how to do this.


2021 ◽  
Vol 25 (21) ◽  
pp. 606-643
Author(s):  
Yury Neretin

We classify irreducible unitary representations of the group of all infinite matrices over a p p -adic field ( p ≠ 2 p\ne 2 ) with integer elements equipped with a natural topology. Any irreducible representation passes through a group G L GL of infinite matrices over a residue ring modulo p k p^k . Irreducible representations of the latter group are induced from finite-dimensional representations of certain open subgroups.


1962 ◽  
Vol 14 ◽  
pp. 293-303 ◽  
Author(s):  
B. Noonan

This paper considers the properties of the representation of a Lie algebra when restricted to an ideal, the subduced* representation of the ideal. This point of view leads to new forms for irreducible representations of Lie algebras, once the concept of matrices of invariance is developed. This concept permits us to show that irreducible representations of a Lie algebra, over an algebraically closed field, can be expressed as a Lie-Kronecker product whose factors are associated with the representation subduced on an ideal. Conversely, if one has such factors, it is shown that they can be put together to give an irreducible representation of the Lie algebra. A valuable guide to this work was supplied by a paper of Clifford (1).


2019 ◽  
Vol 34 (24) ◽  
pp. 1950133 ◽  
Author(s):  
Peter West

We construct the [Formula: see text] theory analogue of the particles that transform under the Poincaré group, that is, the irreducible representations of the semi-direct product of the Cartan involution subalgebra of [Formula: see text] with its vector representation. We show that one such irreducible representation has only the degrees of freedom of 11-dimensional supergravity. This representation is most easily discussed in the light cone formalism and we show that the duality relations found in [Formula: see text] theory take a particularly simple form in this formalism. We explain that the mysterious symmetries found recently in the light cone formulation of maximal supergravity theories are part of [Formula: see text]. We also argue that our familiar space–times have to be extended by additional coordinates when considering extended objects such as branes.


Author(s):  
J. KACZOROWSKI ◽  
A. PERELLI

A classical problem in analytic number theory is the distribution in short intervals of integers with a prescribed multiplicative structure, such as primes, almost-primes, k-free numbers and others. Recently, partly due to applications to cryptology, much attention has been received by the problem of the distribution in short intervals of integers without large prime factors, see Lenstra–Pila–Pomerance [3] and section 5 of the excellent survey by Hildebrand–Tenenbaum [1].In this paper we deal with the distribution in short intervals of numbers representable as a product of a prime and integers from a given set [Sscr ], defined in terms of cardinality properties. Our results can be regarded as an extension of the above quoted results, and we will provide a comparison with such results by a specialization of the set [Sscr ].


1968 ◽  
Vol 11 (3) ◽  
pp. 399-403 ◽  
Author(s):  
F. W. Lemire

Let L denote a finite dimensional, simple Lie algebra over an algebraically closed field F of characteristic zero. It is well known that every weight space of an irreducible representation (ρ, V) admitting a highest weight function is finite dimensional. In a previous paper [2], we have established the existence of a wide class of irreducible representations which admit a one-dimensional weight space but no highest weight function. In this paper we show that the weight spaces of all such representations are finite dimensional.


Symmetry ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 414 ◽  
Author(s):  
Alberto Ibort ◽  
Miguel Rodríguez

In this paper, both the structure and the theory of representations of finite groupoids are discussed. A finite connected groupoid turns out to be an extension of the groupoids of pairs of its set of units by its canonical totally disconnected isotropy subgroupoid. An extension of Maschke’s theorem for groups is proved showing that the algebra of a finite groupoid is semisimple and all finite-dimensional linear representations of finite groupoids are completely reducible. The theory of characters for finite-dimensional representations of finite groupoids is developed and it is shown that irreducible representations of the groupoid are in one-to-one correspondence with irreducible representation of its isotropy groups, with an extension of Burnside’s theorem describing the decomposition of the regular representation of a finite groupoid. Some simple examples illustrating these results are exhibited with emphasis on the groupoids interpretation of Schwinger’s description of quantum mechanical systems.


1951 ◽  
Vol 3 ◽  
pp. 5-6 ◽  
Author(s):  
Noboru Itô

In 1896 G. Frobenius proved: the degree of any (absolutely) irreducible representation of a finite group divides its order. This theorem was improved by I. Schur in 1904 as follows: the degree of any irreducible representation of a finite group divides the index of its centre.


Author(s):  
Dean Alvis ◽  
George Lusztig

Let G be a connected reductive algebraic group over complex numbers. To each unipotent element u ε G (up to conjugacy) and to the unit representation of the group of components of the centralizer of u, Springer (11), (12) associates an irreducible representation of the Weyl group W of G. The tensor product of that representation with the sign representation will be denoted ρu. (This agrees with the notation of (5).) This representation may be realized as a subspace of the cohomology in dimension 2β(u) of the variety of Borel subgroups containing u, where β(u) = dim . For example, when u = 1, ρu is the sign representation of W. The map u → ρu defines an injective map from the set of unipotent conjugacy classes in G to the set of irreducible representations of W (up to isomorphism). Our purpose is to describe this map in the case where G is simple of type Eu (n = 6, 7, 8). (When G is classical or of type F4, this map is described by Shoji (9), (10); the case where G is of type G2 is contained in (11).


2018 ◽  
Vol 2018 (738) ◽  
pp. 281-298 ◽  
Author(s):  
Caleb Eckhardt ◽  
Paul McKenney

Abstract We show that group C*-algebras of finitely generated, nilpotent groups have finite nuclear dimension. It then follows, from a string of deep results, that the C*-algebra A generated by an irreducible representation of such a group has decomposition rank at most 3. If, in addition, A satisfies the universal coefficient theorem, another string of deep results shows it is classifiable by its ordered K-theory and is approximately subhomogeneous. We observe that all C*-algebras generated by faithful irreducible representations of finitely generated, torsion free nilpotent groups satisfy the universal coefficient theorem.


Sign in / Sign up

Export Citation Format

Share Document