Monogenic inverse semigroups and their C* -algebras

Author(s):  
J. B. Conway ◽  
J. Duncan ◽  
A. L. T. Paterson

SynopsisBy using the Halmos-Wallen description of power partial isometries on Hilbert space, we give a complete description of all monogenic inverse semigroups,ℐ. We also describe the full C*-algebra C*ℐ and the reduced C*-algebra C*(ℐ) with particular emphasis on the case of the free monogenic inverse semigroupℑℐt.

2008 ◽  
Vol 19 (01) ◽  
pp. 47-70 ◽  
Author(s):  
TOKE MEIER CARLSEN

By using C*-correspondences and Cuntz–Pimsner algebras, we associate to every subshift (also called a shift space) 𝖷 a C*-algebra [Formula: see text], which is a generalization of the Cuntz–Krieger algebras. We show that [Formula: see text] is the universal C*-algebra generated by partial isometries satisfying relations given by 𝖷. We also show that [Formula: see text] is a one-sided conjugacy invariant of 𝖷.


2005 ◽  
Vol 97 (1) ◽  
pp. 73 ◽  
Author(s):  
Kengo Matsumoto

A $\lambda$-graph system is a labeled Bratteli diagram with shift transformation. It is a generalization of finite labeled graphs and presents a subshift. In [16] the author has introduced a $C^*$-algebra $\mathcal{O}_{\mathfrak{L}}$ associated with a $\lambda$-graph system $\mathfrak{L}$ by using groupoid method as a generalization of the Cuntz-Krieger algebras. In this paper, we concretely construct the $C^*$-algebra $\mathcal{O}_{\mathfrak{L}}$ by using both creation operators and projections on a sub Fock Hilbert space associated with $\mathfrak{L}$. We also introduce a new irreducible condition on $\mathfrak{L}$ under which the $C^*$-algebra $\mathcal{O}_{\mathfrak{L}}$ becomes simple and purely infinite.


1990 ◽  
Vol 42 (2) ◽  
pp. 335-348 ◽  
Author(s):  
Rachel Hancock ◽  
Iain Raeburn

We discuss the structure of some inverse semigroups and the associated C* algebras. In particular, we study the bicyclic semigroup and the free monogenic inverse semigroup, following earlier work of Conway, Duncan and Paterson. We then associate to each zero-one matrix A an inverse semigroup CA, and show that the C*-algebra OA of Cuntz and Krieger is closely related to the semigroup algebra C*(CA).


Filomat ◽  
2016 ◽  
Vol 30 (9) ◽  
pp. 2425-2433
Author(s):  
Runliang Jiang

Let B be a C*-algebra, E be a Hilbert B module and L(E) be the set of adjointable operators on E. Let A be a non-zero C*-subalgebra of L(E). In this paper, some new kinds of irreducibilities of A acting on E are introduced, which are all the generalizations of those associated to Hilbert spaces. The difference between these irreducibilities are illustrated by a number of counterexamples. It is concluded that for a full Hilbert B-module, these irreducibilities are all equivalent if and only if the underlying C*-algebra B is isomorphic to the C*-algebra of all compact operators on a Hilbert space.


2015 ◽  
Vol 117 (2) ◽  
pp. 186 ◽  
Author(s):  
Magnus Dahler Norling

We use a recent result by Cuntz, Echterhoff and Li about the $K$-theory of certain reduced $C^*$-crossed products to describe the $K$-theory of $C^*_r(S)$ when $S$ is an inverse semigroup satisfying certain requirements. A result of Milan and Steinberg allows us to show that $C^*_r(S)$ is Morita equivalent to a crossed product of the type handled by Cuntz, Echterhoff and Li. We apply our result to graph inverse semigroups and the inverse semigroups of one-dimensional tilings.


1997 ◽  
Vol 49 (6) ◽  
pp. 1188-1205 ◽  
Author(s):  
Michael J. Leen

AbstractIn this paper we consider the following problem: Given a unital C*- algebra A and a collection of elements S in the identity component of the invertible group of A, denoted inv0(A), characterize the group of finite products of elements of S. The particular C*-algebras studied in this paper are either unital purely infinite simple or of the form (A ⊗ K)+, where A is any C*-algebra and K is the compact operators on an infinite dimensional separable Hilbert space. The types of elements used in the factorizations are unipotents (1+ nilpotent), positive invertibles and symmetries (s2 = 1). First we determine the groups of finite products for each collection of elements in (A ⊗ K)+. Then we give upper bounds on the number of factors needed in these cases. The main result, which uses results for (A ⊗ K)+, is that for A unital purely infinite and simple, inv0(A) is generated by each of these collections of elements.


1987 ◽  
Vol 29 (1) ◽  
pp. 93-97 ◽  
Author(s):  
C.-S. Lin

Two numerical characterizations of commutativity for C*-algebra (acting on the Hilbert space H) were given in [1]; one used the norms of self-adjoint operators in (Theorem 2), and the other the numerical index of (Theorem 3). In both cases the proofs were based on the result of Kaplansky which states that if the only nilpotent operator in is 0, then is commutative ([2] 2.12.21, p. 68). Of course the converse also holds.


2013 ◽  
Vol 56 (3) ◽  
pp. 630-639
Author(s):  
S. Sundar

Abstract.In this paper, we give a different proof of the fact that the odd dimensional quantum spheres are groupoid C*-algebras. We show that the C*-algebra is generated by an inverse semigroup T of partial isometries. We show that the groupoid 𝓖tight associated with the inverse semigroup T by Exel is exactly the same as the groupoid considered by Sheu.


2002 ◽  
Vol 13 (09) ◽  
pp. 1009-1025 ◽  
Author(s):  
CHI-KEUNG NG

In this paper, we study the duality theory of Hopf C*-algebras in a general "Hilbert-space-free" framework. Our particular interests are the "full duality" and the "reduced duality". In order to study the reduced duality, we define the interesting notion of Fourier algebra of a general Hopf C*-algebra. This study of reduced duality and Fourier algebra is found to be useful in the study of other aspects of Hopf C*-algebras (see e.g. [12–14]).


2013 ◽  
Vol 56 (3) ◽  
pp. 537-550
Author(s):  
SOORAN KANG ◽  
AIDAN SIMS

AbstractWe construct a representation of each finitely aligned aperiodic k-graph Λ on the Hilbert space $\mathcal{H}^{\rm ap}$ with basis indexed by aperiodic boundary paths in Λ. We show that the canonical expectation on $\mathcal{B}(\mathcal{H}^{\rm ap})$ restricts to an expectation of the image of this representation onto the subalgebra spanned by the final projections of the generating partial isometries. We then show that every quotient of the Toeplitz algebra of the k-graph admits an expectation compatible with this one. Using this, we prove that the image of our representation, which is canonically isomorphic to the Cuntz–Krieger algebra, is co-universal for Toeplitz–Cuntz–Krieger families consisting of non-zero partial isometries.


Sign in / Sign up

Export Citation Format

Share Document