A space of slowly decreasing functions with pleasant Fourier transforms

Author(s):  
L. E. Fraenkel

SynopsisThe space in question is Aµ(R):=L1(R) + Bµ(R), where Bµ(R) is a Banach space that contains the “tails” (the dominant parts for large values of |x|) of certain slowly decreasing functions from R to R. Functions in Bµ(R) are of bounded variation, and the norm involves their variation and a weighting function. Theorems are proved only for Bµ(R), because those for L1(R) are known. The results concern the convolution of a function in Bµ(R) with one in L1(R), the Fourier transform acting on Bµ(R), and the signum rule for the Hilbert transform of functions in Bµ(R).

2021 ◽  
Vol 18 (2) ◽  
pp. 179-195
Author(s):  
Elijah Liflyand

We introduce weighted amalgam-type spaces and analyze their relations with some known spaces. Integrability results for the Fourier transform of a function with the derivative from one of those spaces are proved. The obtained results are applied to the integrability of trigonometric series with the sequence of coefficients of bounded variation.


Author(s):  
Shuiqing Xu ◽  
Li Feng ◽  
Yi Chai ◽  
Youqiang Hu ◽  
Lei Huang

The Hilbert transform is tightly associated with the Fourier transform. As the offset linear canonical transform (OLCT) has been shown to be useful and powerful in signal processing and optics, the concept of generalized Hilbert transform associated with the OLCT has been proposed in the literature. However, some basic results for the generalized Hilbert transform still remain unknown. Therefore, in this paper, theories and properties of the generalized Hilbert transform have been considered. First, we introduce some basic properties of the generalized Hilbert transform. Then, an important theorem for the generalized analytic signal is presented. Subsequently, the generalized Bedrosian theorem for the generalized Hilbert transform is formulated. In addition, a generalized secure single-sideband (SSB) modulation system is also presented. Finally, the simulations are carried out to verify the validity and correctness of the proposed results.


Geophysics ◽  
2018 ◽  
Vol 83 (1) ◽  
pp. F1-F8 ◽  
Author(s):  
Yikang Zheng ◽  
Yibo Wang ◽  
Xu Chang

The separation of upgoing and downgoing wavefields is an important technique in the processing of vertical seismic profiling data and ocean bottom cable data. It is also used in reverse time migration (RTM) based on the two-way wave equation to suppress low-frequency, high-amplitude noises and false images. Therefore, we model upgoing and downgoing wavefields directly in the wavefield propagation. There are several methods to obtain separated wavefields. The methods using the Fourier transform require storage of the wavefields, which is not practical due to the extremely high disk-space requirements. Methods using Poynting vectors have an ambiguity problem when crossing a peak or a trough of the wavefields. To improve the accuracy and stability of the modeled upgoing and downgoing wavefields in a complicated velocity model, we evaluate an efficient forward-modeling approach purely based on the Hilbert transform in 3D acoustic wavefield simulation. This method is implemented by the Hilbert transform along the time and depth axis, instead of the Fourier transform. We explicitly derive the formulas for upgoing and downgoing wavefield propagation and attach reproducible source codes. Applications to synthetic models indicate that this method can forward propagate upgoing and downgoing wavefields effectively and improve the imaging quality in migration. This method has various potential applications, e.g., 3D seismic imaging with high computation efficiency.


Author(s):  
Angela A. Albanese ◽  
Claudio Mele

AbstractIn this paper we continue the study of the spaces $${\mathcal O}_{M,\omega }({\mathbb R}^N)$$ O M , ω ( R N ) and $${\mathcal O}_{C,\omega }({\mathbb R}^N)$$ O C , ω ( R N ) undertaken in Albanese and Mele (J Pseudo-Differ Oper Appl, 2021). We determine new representations of such spaces and we give some structure theorems for their dual spaces. Furthermore, we show that $${\mathcal O}'_{C,\omega }({\mathbb R}^N)$$ O C , ω ′ ( R N ) is the space of convolutors of the space $${\mathcal S}_\omega ({\mathbb R}^N)$$ S ω ( R N ) of the $$\omega $$ ω -ultradifferentiable rapidly decreasing functions of Beurling type (in the sense of Braun, Meise and Taylor) and of its dual space $${\mathcal S}'_\omega ({\mathbb R}^N)$$ S ω ′ ( R N ) . We also establish that the Fourier transform is an isomorphism from $${\mathcal O}'_{C,\omega }({\mathbb R}^N)$$ O C , ω ′ ( R N ) onto $${\mathcal O}_{M,\omega }({\mathbb R}^N)$$ O M , ω ( R N ) . In particular, we prove that this isomorphism is topological when the former space is endowed with the strong operator lc-topology induced by $${\mathcal L}_b({\mathcal S}_\omega ({\mathbb R}^N))$$ L b ( S ω ( R N ) ) and the last space is endowed with its natural lc-topology.


Author(s):  
M. Younus Bhat ◽  
Aamir H. Dar

The linear canonical transform (LCT) provides a unified treatment of the generalized Fourier transforms in the sense that it is an embodiment of several well-known integral transforms including the Fourier transform, fractional Fourier transform, Fresnel transform. Using this fascinating property of LCT, we, in this paper, constructed associated wavelet packets. First, we construct wavelet packets corresponding to nonuniform Multiresolution analysis (MRA) associated with LCT and then those corresponding to vector-valued nonuniform MRA associated with LCT. We investigate their various properties by means of LCT.


Geophysics ◽  
1985 ◽  
Vol 50 (9) ◽  
pp. 1500-1501
Author(s):  
B. N. P. Agarwal ◽  
D. Sita Ramaiah

Bhimasankaram et al. (1977) used Fourier spectrum analysis for a direct approach to the interpretation of gravity anomaly over a finite inclined dike. They derived several equations from the real and imaginary components and from the amplitude and phase spectra to relate various parameters of the dike. Because the width 2b of the dike (Figure 1) appears only in sin (ωb) term—ω being the angular frequency—they determined its value from the minima/zeroes of the amplitude spectra. The theoretical Fourier spectrum uses gravity field data over an infinite distance (length), whereas field observations are available only for a limited distance. Thus, a set of observational data is viewed as a product of infinite‐distance data with an appropriate window function. Usually, a rectangular window of appropriate distance (width) and of unit magnitude is chosen for this purpose. The Fourier transform of the finite‐distance and discrete data is thus represented by convolution operations between Fourier transforms of the infinite‐distance data, the window function, and the comb function. The combined effect gives a smooth, weighted average spectrum. Thus, the Fourier transform of actual observed data may differ substantially from theoretic data. The differences are apparent for low‐ and high‐frequency ranges. As a result, the minima of the amplitude spectra may change considerably, thereby rendering the estimate of the width of the dike unreliable from the roots of the equation sin (ωb) = 0.


Sign in / Sign up

Export Citation Format

Share Document