forward modeling
Recently Published Documents


TOTAL DOCUMENTS

1063
(FIVE YEARS 238)

H-INDEX

47
(FIVE YEARS 6)

2021 ◽  
Author(s):  
Houzhu Zhang ◽  
Jiaxuan Li ◽  
Abdulmohsen Ali

Abstract Fractured reservoirs, including unconventional fields, are important in global energy supply, particularly for carbonate source rocks. Fractures can influence subsurface fluid flow and the stress state of a reservoir. The knowledge about the existence of fractures, their spatial distributions, and orientations can help us optimize well productivity and reservoir performance. Seismic detection of subsurface fractures provides important measurements to remotely image field-scale fractures. In developing such technology, forward modeling of the seismic response from fractures in the reservoir provides an important alternate tool for imaging subsurface fractures. In this paper, we implement a seismic modeling algorithm which can simulate 3D wave propagation in an arbitrary background media with imbedded fractures. During modeling, the fractures are added to the background medium by linear slip theory. Examples demonstrated the impacts of fractures on the wave propagation patterns for both PP and PS waves. We also investigate the amplitude versus offset (AVO) effects caused by fractures in a layer media and lay out potential applications of forward modeling in the inversion of fracture parameters and the estimation of fluid contents.


Author(s):  
Jinxuan Tang ◽  
Hui Zhou ◽  
Chuntao Jiang ◽  
Muming Xia ◽  
Hanming Chen ◽  
...  

ABSTRACT As a complementary way to traditional wave-equation-based forward modeling methods, lattice spring model (LSM) is introduced into seismology for wavefield modeling owing to its remarkable stability, high-calculation accuracy, and flexibility in choosing simulation meshes, and so forth. The LSM simulates seismic-wave propagation from a micromechanics perspective, thus enjoying comprehensive characterization of elastic dynamics in complex media. Incorporating an absorbing boundary condition (ABC) is necessary for wavefield modeling to avoid the artificial reflections caused by truncated boundaries. To the best of our knowledge, the perfectly matched layer (PML) method has been a routine ABC in the wave-equation-based numerical modeling of wave physics. However, it has not been used in the nonwave-equation-based LSM simulations. In this work, we want to apply PML to LSM to attenuate the boundary reflections. We divide the whole simulation region into PML region and inner region, PML region surrounds the inner region. To incorporate PML to LSM, we establish elastic-wave equations corresponding to LSM. The simulation in the PML region is conducted using the established wave equations and the simulation in the inner region is conducted using LSM. Three simulation examples show that the PML scheme is effective and outperforms Gaussian ABC.


2021 ◽  
Vol 72 ◽  
pp. 113-122
Author(s):  
Amir Mustaqim Majdi ◽  
◽  
Seyed Yaser Moussavi Alashloo ◽  
Nik Nur Anis Amalina Nik Mohd Hassan ◽  
Abdul Rahim Md Arshad ◽  
...  

Traveltime is one of the propagating wave’s components. As the wave propagates further, the traveltime increases. It can be computed by solving wave equation of the ray path or the eikonal wave equation. Accurate method of computing traveltimes will give a significant impact on enhancing the output of seismic forward modeling and migration. In seismic forward modeling, computation of the wave’s traveltime locally by ray tracing method leads to low resolution of the resulting seismic image, especially when the subsurface is having a complex geology. However, computing the wave’s traveltime with a gridding scheme by finite difference methods able to overcomes the problem. This paper aims to discuss the ability of ray tracing and fast marching method of finite difference in obtaining a seismic image that have more similarity with its subsurface model. We illustrated the results of the traveltime computation by both methods in form of ray path projection and wavefront. We employed these methods in forward modeling and compared both resulting seismic images. Seismic migration is executed as a part of quality control (QC). We used a synthetic velocity model which based on a part of Malay Basin geology structure. Our findings shows that the seismic images produced by the application of fast marching finite difference method has better resolution than ray tracing method especially on deeper part of subsurface model.


2021 ◽  
pp. 349-365
Author(s):  
Kaiyang Guo ◽  
Defu Lin ◽  
Bin Li ◽  
Tao Song ◽  
Luyao Zang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document