Blow-up of solutions of a quasilinear parabolic equation

Author(s):  
Ryuichi Suzuki ◽  
Noriaki Umeda

We consider non-negative solutions of the Cauchy problem for quasilinear parabolic equations ut = Δum + f(u), where m > 1 and f(ξ) is a positive function in ξ > 0 satisfying f(0) = 0 and a blow-up conditionWe show that if ξm+2/N /(−log ξ)β = O(f(ξ)) as ξ ↓ 0 for some 0 < β < 2/(mN + 2), one of the following holds: (i) all non-trivial solutions blow up in finite time; (ii) every non-trivial solution with an initial datum u0 having compact support exists globally in time and grows up to ∞ as t → ∞: limtt→∞ inf|x|<Ru(x, t) = ∞ for any R > 0. Moreover, we give a condition on f such that (i) holds, and show the existence of f such that (ii) holds.

2020 ◽  
Vol 17 (2) ◽  
pp. 278-295
Author(s):  
Yevgeniia Yevgenieva

We study the quasilinear parabolic equation $(|u|^{q-1}u)_t-\Delta_p\,u=0$ in a multidimensional domain $(0,T)\times\Omega$ under the condition $u(t,x)=f(t,x)$ on $(0,T)\times\partial\Omega$, where the boundary function $f$ blows-up at a finite time $T$, i.e., $f(t,x)\rightarrow\infty$ as $t\rightarrow T$. For $p\geqslant q>0$ and the boundary function $f$ with power-like behavior, the upper bounds of weak solutions of the problem are obtained. The behavior of solutions at the transition from the case where $p>q$ to $p=q$ is investigated. A general approach within the method of energy estimates to such problems is described.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Yuanfei Li ◽  
Lianhong Guo ◽  
Peng Zeng

Abstract The aim of this paper is to show some applications of Sobolev inequalities in partial differential equations. With the aid of some well-known inequalities, we derive the existence of global solution for the quasilinear parabolic equations. When the blow-up occurs, we derive the lower bound of the blow-up solution.


Sign in / Sign up

Export Citation Format

Share Document