scholarly journals Ground states for the pseudo-relativistic Hartree equation with external potential

Author(s):  
Silvia Cingolani ◽  
Simone Secchi

We prove the existence of positive ground state solutions to the pseudo-relativistic Schrödinger equationwhere N ≥ 3, m > 0, V is a bounded external scalar potential and W is a radially symmetric convolution potential satisfying suitable assumptions. We also provide some asymptotic decay estimates of the found solutions.

2014 ◽  
Vol 58 (2) ◽  
pp. 305-321 ◽  
Author(s):  
Xiaojun Chang

AbstractIn this paper, we study a time-independent fractional Schrödinger equation of the form (−Δ)su + V(x)u = g(u) in ℝN, where N ≥, s ∈ (0,1) and (−Δ)s is the fractional Laplacian. By variational methods, we prove the existence of ground state solutions when V is unbounded and the nonlinearity g is subcritical and satisfies the following geometry condition:


Author(s):  
Bartosz Bieganowski ◽  
Simone Secchi

Abstract We consider the nonlinear fractional problem $$\begin{aligned} (-\Delta )^{s} u + V(x) u = f(x,u)&\quad \hbox {in } \mathbb {R}^N \end{aligned}$$ ( - Δ ) s u + V ( x ) u = f ( x , u ) in R N We show that ground state solutions converge (along a subsequence) in $$L^2_{\mathrm {loc}} (\mathbb {R}^N)$$ L loc 2 ( R N ) , under suitable conditions on f and V, to a ground state solution of the local problem as $$s \rightarrow 1^-$$ s → 1 - .


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Jing Chen ◽  
Zu Gao

Abstract We consider the following nonlinear fractional Schrödinger equation: $$ (-\triangle )^{s} u+V(x)u=g(u) \quad \text{in } \mathbb{R} ^{N}, $$ ( − △ ) s u + V ( x ) u = g ( u ) in  R N , where $s\in (0, 1)$ s ∈ ( 0 , 1 ) , $N>2s$ N > 2 s , $V(x)$ V ( x ) is differentiable, and $g\in C ^{1}(\mathbb{R} , \mathbb{R} )$ g ∈ C 1 ( R , R ) . By exploiting the minimization method with a constraint over Pohoz̆aev manifold, we obtain the existence of ground state solutions. With the help of Pohoz̆aev identity we also process the existence of the least energy solutions for the above equation. Our results improve the existing study on this nonlocal problem with Berestycki–Lions type nonlinearity to the one that does not need the oddness assumption.


2019 ◽  
Vol 109 (2) ◽  
pp. 193-216 ◽  
Author(s):  
J. C. DE ALBUQUERQUE ◽  
JOÃO MARCOS DO Ó ◽  
EDCARLOS D. SILVA

We study the existence of positive ground state solutions for the following class of $(p,q)$-Laplacian coupled systems $$\begin{eqnarray}\left\{\begin{array}{@{}lr@{}}-\unicode[STIX]{x1D6E5}_{p}u+a(x)|u|^{p-2}u=f(u)+\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D706}(x)|u|^{\unicode[STIX]{x1D6FC}-2}u|v|^{\unicode[STIX]{x1D6FD}}, & x\in \mathbb{R}^{N},\\ -\unicode[STIX]{x1D6E5}_{q}v+b(x)|v|^{q-2}v=g(v)+\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D706}(x)|v|^{\unicode[STIX]{x1D6FD}-2}v|u|^{\unicode[STIX]{x1D6FC}}, & x\in \mathbb{R}^{N},\end{array}\right.\end{eqnarray}$$ where $1<p\leq q<N$. Here the coefficient $\unicode[STIX]{x1D706}(x)$ of the coupling term is related to the potentials by the condition $|\unicode[STIX]{x1D706}(x)|\leq \unicode[STIX]{x1D6FF}a(x)^{\unicode[STIX]{x1D6FC}/p}b(x)^{\unicode[STIX]{x1D6FD}/q}$, where $\unicode[STIX]{x1D6FF}\in (0,1)$ and $\unicode[STIX]{x1D6FC}/p+\unicode[STIX]{x1D6FD}/q=1$. Using a variational approach based on minimization over the Nehari manifold, we establish the existence of positive ground state solutions for a large class of nonlinear terms and potentials.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Li Ma ◽  
Zhenxiong Li

Abstract We consider ground states of the nonlinear fractional Schrödinger equation with potentials ( - Δ ) s ⁢ u + V ⁢ ( x ) ⁢ u = f ⁢ ( x , u ) , s ∈ ( 0 , 1 ) , (-\Delta)^{s}u+V(x)u=f(x,u),\quad s\in(0,1), on the whole space ℝ N {\mathbb{R}^{N}} , where V is a periodic non-negative nontrivial function on ℝ N {\mathbb{R}^{N}} and the nonlinear term f has some proper growth on u. Under uniform bounded assumptions about V, we can show the existence of a ground state. We extend the result of Li, Wang, and Zeng to the fractional case.


2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Min Liu ◽  
Xiaorui Yue

A Schrödinger equation and system with magnetic fields and Hardy-Sobolev critical exponents are investigated in this paper, and, under proper conditions, the existence of ground state solutions to these two problems is given.


Sign in / Sign up

Export Citation Format

Share Document