scholarly journals Poincaré inequalities for Sobolev spaces with matrix-valued weights and applications to degenerate partial differential equations

Author(s):  
Dario D. Monticelli ◽  
Kevin R. Payne ◽  
Fabio Punzo

For bounded domains Ω, we prove that the Lp-norm of a regular function with compact support is controlled by weighted Lp-norms of its gradient, where the weight belongs to a class of symmetric non-negative definite matrix-valued functions. The class of weights is defined by regularity assumptions and structural conditions on the degeneracy set, where the determinant vanishes. In particular, the weight A is assumed to have rank at least 1 when restricted to the normal bundle of the degeneracy set S. This generalization of the classical Poincaré inequality is then applied to develop a robust theory of first-order Lp-based Sobolev spaces with matrix-valued weight A. The Poincaré inequality and these Sobolev spaces are then applied to produce various results on existence, uniqueness and qualitative properties of weak solutions to boundary-value problems for degenerate elliptic, degenerate parabolic and degenerate hyperbolic partial differential equations (PDEs) of second order written in divergence form, where A is calibrated to the matrix of coefficients of the second-order spatial derivatives. The notion of weak solution is variational: the spatial states belong to the matrix-weighted Sobolev spaces with p = 2. For the degenerate elliptic PDEs, the Dirichlet problem is treated by the use of the Poincaré inequality and Lax–Milgram theorem, while the treatment of the Cauchy–Dirichlet problem for the degenerate evolution equations relies only on the Poincaré inequality and the parabolic and hyperbolic counterparts of the Lax–Milgram theorem.

2018 ◽  
Vol 1 (1) ◽  
pp. 1
Author(s):  
Sekar Nugraheni ◽  
Christiana Rini Indrati

The weak solution is one of solutions of the partial differential equations, that is generated from derivative of the distribution. In particular, the definition of a weak solution of the Dirichlet problem for second order linear elliptic partial differential equations is constructed by the definition and the characteristics of Sobolev spaces on Lipschitz domain in R^n. By using the Lax Milgram Theorem, Alternative Fredholm Theorem and Maximum Principle Theorem, we derived the sufficient conditions to ensure the uniqueness of the weak solution of Dirichlet problem for second order linear elliptic partial differential equations. Furthermore, we discussed the eigenvalue of Dirichlet problem for second order linear elliptic partial differential equations with  respect to the weak solution.


2020 ◽  
Vol 17 (3) ◽  
pp. 365-371
Author(s):  
Anatoliy Pogorui ◽  
Tamila Kolomiiets

This paper deals with studying some properties of a monogenic function defined on a vector space with values in the Clifford algebra generated by the space. We provide some expansions of a monogenic function and consider its application to study solutions of second-order partial differential equations.


Sign in / Sign up

Export Citation Format

Share Document