scholarly journals A numerical scheme for the electromagnetic response in thin conductors of arbitrary planar shape

Author(s):  
P. F. Siew

AbstractA calculation of the electromagnetic response of a thin conductor in the presence of an exciting primary magnetic field has been attempted by various authors. Analytic solutions are obtainable when either the conductor is of infinite extent or when the problem possesses some symmetry. The loss of symmetry makes the problem difficult to solve except for the simplest shape – that of a circular conductor. A numerical method has been used for the rectangular conductor by other authors. In this paper we consider the response due to a thin plane conductor of arbitrary shape. The method involves the numerical generation of a set of body-fitted orthogonal curvilinear coordinates which maps the conductor onto a unit square. Good orthogonal grids can be generated for shapes that do not deviate too far from the rectangular. In terms of these curvilinear coordinates the vector potential for the area current density satisfies an integro-differential equation which is solved numerically.

1927 ◽  
Vol 46 ◽  
pp. 194-205 ◽  
Author(s):  
C. E. Weatherburn

The properties of “triply orthogonal” systems of surfaces have been examined by various writers and in considerable detail; but those of triple systems generally have not hitherto received the same attention. It is the purpose of this paper to discuss non-orthogonal systems, and to investigate formulæ in terms of the “oblique” curvilinear coordinates u, v, w which such a system determines.


2011 ◽  
Vol 130-134 ◽  
pp. 2993-2996
Author(s):  
Ming Qin Liu ◽  
Y.L. Liu

The purpose of this paper is to present a 2D depth-averaged model under orthogonal curvilinear coordinates for simulating two-dimensional circular dam-break flows. The proposed model uses an orthogonal curvilinear coordinate system efficiently and accurately to simulate the flow field with irregular boundaries. As for the numerical solution procedure, The SIMPLEC solution procedure has been used for the transformed governing equations in the transformed domain. Practical application of the model is illustrated by an example, which demonstrates that the mathematical model can capture hydraulic discontinuities accurately such as steep fronts, hydraulic jump and drop, etc.


Sign in / Sign up

Export Citation Format

Share Document