curved surface
Recently Published Documents


TOTAL DOCUMENTS

1474
(FIVE YEARS 348)

H-INDEX

37
(FIVE YEARS 12)

2022 ◽  
Author(s):  
Daniel T Bowers ◽  
Justin L Brown

Abstract Mechanotransduction arises from information encoded in the shape of materials such as curvature. It induces activation of small GTPase signaling affecting cell phenotypes including differentiation. We carried out a set of preliminary experiments to test the hypothesis that curvature (1/radius) would also affect cell motility due to signal pathway crosstalk. High molecular weight poly (methyl methacrylate) straight nanofibers were electrospun with curvature ranging from 41 to 1 μm−1 and collected on a passivated glass substrate. The fiber curvature increased mouse mesenchymal stem cell aspect ratio (P < 0.02) and decreased cell area (P < 0.01). Despite little effect on some motility patterns such as polarity and persistence, we found selected fiber curvatures can increase normalized random fibroblastic mouse embryonic cell (MEF) migration velocity close to 2.5 times compared with a flat surface (P < 0.001). A maximum in the velocity curve occurred near 2.5 μm−1 and may vary with the time since initiation of attachment to the surface (range of 0–20 h). In the middle range of fiber curvatures, the relative relationship to curvature was similar regardless of treatment with Rho-kinase inhibitor (Y27632) or cdc42 inhibitor (ML141), although it was decreased on most curvatures (P < 0.05). However, below a critical curvature threshold MEFs may not be able to distinguish shallow curvature from a flat surface, while still being affected by contact guidance. The preliminary data in this manuscript suggested the large low curvature fibers were interpreted in a manner similar to a non-curved surface. Thus, curvature is a biomaterial construct design parameter that should be considered when specific biological responses are desired. Statement of integration, innovation, and insight  Replacement of damaged or diseased tissues that cannot otherwise regenerate is transforming modern medicine. However, the extent to which we can rationally design materials to affect cellular outcomes remains low. Knowing the effect of material stiffness and diameter on stem cell differentiation, we investigated cell migration and signaling on fibrous scaffolds. By investigating diameters across orders of magnitude (50–2000 nm), we identified a velocity maximum of ~800 nm. Furthermore, the results suggest large fibers may not be interpreted by single cells as a curved surface. This work presents insight into the design of constructs for engineering tissues.


2022 ◽  
pp. 004051752110600
Author(s):  
Dan Yang ◽  
Qingsong Wei ◽  
Xiaogang Chen ◽  
Jinchun Li

Ballistic performance and moldability are two important properties for 3D curved-surface ballistic applications. However, these two properties are contradictory to each other and impossible to improve at the same time, which is a technical issue that needs to be solved urgently in the research for ballistic materials for 3D curved-surface ballistic applications. In order to solve this issue, a new 3D compound structure fabric has been developed as part of our former research and has been shown to provide better ballistic performance with equivalent moldability compared to 3D angle-interlock fabric—a well-known 3D material for 3D curved-surface ballistic applications. Nevertheless, the ballistic performance of this new fabric itself is not clear, and further research is necessary. In this study, the ballistic performance of this new 3D compound structure fabric was investigated via the finite element analysis (FEA) model to examine energy absorption and penetration resistance. A ballistic test was also carried out to verify the results of the FEA model, and this demonstrated that the theoretical model was consistent with the experimental results.


Author(s):  
Hossein Ghorbani-Menghari ◽  
Mehrdad Azadipour ◽  
Mehran Ghasempour-Mouziraji ◽  
Young Hoon Moon ◽  
Ji Hoon Kim

The deformation machining process (DMP) involves machining and incremental forming of thin structures. It can be applied for manufacturing products such as curved-surface blades without using 5-axis computerised numerical control machines. This work presents the effect of tool diameter and forming temperature on spring-back and dimensional accuracy of a simple fabricated part. The results of the first phase of the study are utilised to design the fabrication process of a curved surface blade. A feature-based algorithm is used to design the tool path for the forming process. The dimensional accuracy of the final product is improved through warm forming, two-point incremental forming, and extension of the bending zone to the outside of the product edges. The results show that DMP can be used to fabricate complex curved-surface workpieces with acceptable dimensional accuracy.


2022 ◽  
Vol 12 (2) ◽  
pp. 601
Author(s):  
Chae-Won Kim ◽  
Gwang-Yeol Park ◽  
Jae-Cheol Shin ◽  
Hyo-Jin Kim

In order to improve efficiency of flexible III-V semiconductor multi-junction solar cells, it is important to enhance the current density for efficiency improvement and to attain an even efficiency of solar cells on a curved surface. In this study, the nanotextured InAlP window layer of a GaAs single-junction solar cell was employed to suppress reflectance in broad range. The nanotextured surface affects the reflectance suppression with the broad spectrum of wavelength, which causes it to increase the current density and efficiency of the GaAs single-junction solar cell and alleviate the efficiency drop at the high incident angle of the light source. Those results show the potential of the effectively suppressed reflectance of multi-junction solar cells and even performance of solar cells attached on a curved surface.


2022 ◽  
Vol 12 (2) ◽  
pp. 550
Author(s):  
Yiheng Song ◽  
Ziying Wang ◽  
Jie Chen ◽  
Jinxiang Chen

Curved surfaces can give plates a unique aesthetic effect and physical advantages in acoustics and optics. Assembling such curved plates can greatly improve the image of buildings and enrich their functions. It is thus not surprising to notice that their wide applications in designed or completed buildings in China have become a trend. Thus, this study offers a comprehensive summary of the application progress of curved plates in the architectural field from three aspects: image expression, acoustic characteristics, and optical characteristics. On this basis, future directions are proposed. The main findings or suggestions are as follows: (1) climate harshness has increased recently, and the safety of structures and materials and the coupling effect of the two must be fully considered when designing the shapes of curved surface buildings; (2) research on the mechanism and numerical calculation of curved diffuser systems with different sizes and curvatures needs to be further developed; and (3) experimental studies of various and complex curved plates and different conditions to explore their optimal reflectivity, transmittance, absorptivity, and other optical properties will be an important development direction.


2022 ◽  
Vol 92 (2) ◽  
pp. 194
Author(s):  
В.А. Александров

The generation of a directed flow on the water surface in channels with sources and resonators of capillary oscillations is detected and investigated. The surface flow is caused by the movement of the liquid through the gaps between the resonators, as well as between the resonator and the channel walls, under a curved surface that is locally deformed by the sources of capillary vibrations, the transfer of energy of the locally curved surface of the liquid by capillary waves, and the transmission of wave momentum to the particles of the liquid surface in one direction. It is shown that capillary waves together with the energy transfer an excess surface, the flux density of which is equal to the flux of the surface deformation. Moving devices with a capillary-wave accelerator of the surface liquid flow are demonstrated.


2022 ◽  
Vol 167 ◽  
pp. 104512
Author(s):  
Sen Wang ◽  
Yinghao Gao ◽  
Hailin Huang ◽  
Bing Li ◽  
Hongwei Guo ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document