Out-domain Chinese new word detection with statistics-based character embedding

2019 ◽  
Vol 25 (2) ◽  
pp. 239-255
Author(s):  
Yuzhi Liang ◽  
Min Yang ◽  
Jia Zhu ◽  
S. M. Yiu

AbstractUnlike English and other Western languages, many Asian languages such as Chinese and Japanese do not delimit words by space. Word segmentation and new word detection are therefore key steps in processing these languages. Chinese word segmentation can be considered as a part-of-speech (POS)-tagging problem. We can segment corpus by assigning a label for each character which indicates the position of the character in a word (e.g., “B” for word beginning, and “E” for the end of the word, etc.). Chinese word segmentation seems to be well studied. Machine learning models such as conditional random field (CRF) and bi-directional long short-term memory (LSTM) have shown outstanding performances on this task. However, the segmentation accuracies drop significantly when applying the same approaches to out-domain cases, in which high-quality in-domain training data are not available. An example of out-domain applications is the new word detection in Chinese microblogs for which the availability of high-quality corpus is limited. In this paper, we focus on out-domain Chinese new word detection. We first design a new method Edge Likelihood (EL) for Chinese word boundary detection. Then we propose a domain-independent Chinese new word detector (DICND); each Chinese character is represented as a low-dimensional vector in the proposed framework, and segmentation-related features of the character are used as the values in the vector.

GEOMATICA ◽  
2020 ◽  
Author(s):  
Qinjun Qiu ◽  
Zhong Xie ◽  
Liang Wu

Unlike English and other western languages, Chinese does not delimit words using white-spaces. Chinese Word Segmentation (CWS) is the crucial first step towards natural language processing. However, for the geoscience subject domain, the CWS problem remains unresolved with many challenges. Although traditional methods can be used to process geoscience documents, they lack the domain knowledge for massive geoscience documents. Considering the above challenges, this motivated us to build a segmenter specifically for the geoscience domain. Currently, most of the state-of-the-art methods for Chinese word segmentation are based on supervised learning, whose features are mostly extracted from a local context. In this paper, we proposed a framework for sequence learning by incorporating cyclic self-learning corpus training. Following this framework, we build the GeoSegmenter based on the Bi-directional Long Short-Term Memory (Bi-LSTM) network model to perform Chinese word segmentation. It can gain a great advantage through iterations of the training data. Empirical experimental results on geoscience documents and benchmark datasets showed that geological documents can be identified, and it can also recognize the generic documents.


GEOMATICA ◽  
2018 ◽  
Vol 72 (1) ◽  
pp. 16-26 ◽  
Author(s):  
Qinjun Qiu ◽  
Zhong Xie ◽  
Liang Wu

Unlike English and other western languages, Chinese does not delimit words using white-spaces. Chinese Word Segmentation (CWS) is the crucial first step towards natural language processing. However, for the geoscience subject domain, the CWS problem remains unresolved with many challenges. Although traditional methods can be used to process geoscience documents, they lack the domain knowledge for massive geoscience documents. Considering the above challenges, this motivated us to build a segmenter specifically for the geoscience domain. Currently, most of the state-of-the-art methods for Chinese word segmentation are based on supervised learning, whose features are mostly extracted from a local context. In this paper, we proposed a framework for sequence learning by incorporating cyclic self-learning corpus training. Following this framework, we build the GeoSegmenter based on the Bi-directional Long Short-Term Memory (Bi-LSTM) network model to perform Chinese word segmentation. It can gain a great advantage through iterations of the training data. Empirical experimental results on geoscience documents and benchmark datasets showed that geological documents can be identified, and it can also recognize the generic documents.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 12993-13002 ◽  
Author(s):  
Dangguo Shao ◽  
Na Zheng ◽  
Zhaoqiang Yang ◽  
Zhenhua Chen ◽  
Yan Xiang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document