LINEARLY IMPLICIT ENERGY-PRESERVING FOURIER PSEUDOSPECTRAL SCHEMES FOR THE COMPLEX MODIFIED KORTEWEG–DE VRIES EQUATION

2020 ◽  
Vol 62 (3) ◽  
pp. 256-273
Author(s):  
J. L. YAN ◽  
L. H. ZHENG ◽  
L. ZHU ◽  
F. Q. LU

AbstractWe propose two linearly implicit energy-preserving schemes for the complex modified Korteweg–de Vries equation, based on the invariant energy quadratization method. First, a new variable is introduced and a new Hamiltonian system is constructed for this equation. Then the Fourier pseudospectral method is used for the space discretization and the Crank–Nicolson leap-frog schemes for the time discretization. The proposed schemes are linearly implicit, which is only needed to solve a linear system at each time step. The fully discrete schemes can be shown to conserve both mass and energy in the discrete setting. Some numerical examples are also presented to validate the effectiveness of the proposed schemes.

2021 ◽  
Vol 62 ◽  
pp. 256-273
Author(s):  
J. L. Yan ◽  
L. H. Zheng ◽  
L. Zhu ◽  
F. Q. Lu

We propose two linearly implicit energy-preserving schemes for the complex modified Korteweg–de Vries equation, based on the invariant energy quadratization method. First, a new variable is introduced and a new Hamiltonian system is constructed for this equation. Then the Fourier pseudospectral method is used for the space discretization and the Crank–Nicolson leap-frog schemes for the time discretization. The proposed schemes are linearly implicit, which is only needed to solve a linear system at each time step. The fully discrete schemes can be shown to conserve both mass and energy in the discrete setting. Some numerical examples are also presented to validate the effectiveness of the proposed schemes.   doi:10.1017/S1446181120000218


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Jae-Young Choi ◽  
Dong Kyun Im ◽  
Jangho Park ◽  
Seongim Choi

A mapped Chebyshev pseudospectral method is extended to solve three-dimensional unsteady flow problems. As the classical Chebyshev spectral approach can lead to numerical instabilities due to ill conditioning of the spectral matrix, the Chebyshev points are evenly redistributed over the domain by an inverse sine mapping function. The mapped Chebyshev pseudospectral method can be used as an alternative time-spectral approach that uses a Chebyshev collocation operator to approximate the time derivative terms in the unsteady flow governing equations, and the method can make general applications to both nonperiodic and periodic problems. In this study, the mapped Chebyshev pseudospectral method is employed to solve three-dimensional periodic problem to verify the spectral accuracy and computational efficiency with those of the Fourier pseudospectral method and the time-accurate method. The results show a good agreement with both of the Fourier pseudospectral method and the time-accurate method. The flow solutions also demonstrate a good agreement with the experimental data. Similar to the Fourier pseudospectral method, the mapped Chebyshev pseudospectral method approximates the unsteady flow solutions with a precise accuracy at a considerably effective computational cost compared to the conventional time-accurate method.


Sign in / Sign up

Export Citation Format

Share Document