International Journal of Aerospace Engineering
Latest Publications


TOTAL DOCUMENTS

1054
(FIVE YEARS 544)

H-INDEX

17
(FIVE YEARS 5)

Published By Hindawi Limited

1687-5974, 1687-5966

2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Ao He ◽  
Yinong Zhang ◽  
Huimin Zhao ◽  
Ban Wang ◽  
Zhenghong Gao

This paper proposes an adaptive fault-tolerant control strategy for a hybrid vertical take-off and landing (VTOL) unmanned aerial vehicle (UAV) to simultaneously compensate actuator faults and model uncertainties. With the proposed adaptive control schemes, both actuator faults and model uncertainties can be accommodated without the knowledge of fault information and uncertainty bounds. The proposed control scheme is constructed with two separate control modules. The low-level control allocation module is used to distribute the virtual control signals among the available redundant actuators. The high-level control module is constructed with an adaptive sliding mode controller, which is employed to maintain the overall system tracking performance in both faulty and uncertain conditions. In the case of actuator faults and model uncertainties, the adaptive scheme will be triggered to generate more virtual control signals to compensate the virtual control error and maintain the desired system tracking performance. The effectiveness of the proposed control strategy is validated through comparative simulation tests under different faulty and uncertain scenarios.


2022 ◽  
Vol 2022 ◽  
pp. 1-14
Author(s):  
Changqing Wu ◽  
Xiaodong Han ◽  
Weiyu An ◽  
Jianglei Gong ◽  
Nan Xu

In many space missions, spacecraft are required to have the ability to avoid various obstacles and finally reach the target point. In this paper, the path planning of spacecraft attitude maneuver under boundary constraints and pointing constraints is studied. The boundary constraints and orientation constraints are constructed as finite functions of path evaluation. From the point of view of optimal time and shortest path, the constrained attitude maneuver problem is reduced to optimal time and path solving problem. To address this problem, a metaheuristic maneuver path planning method is proposed (cross-mutation grey wolf algorithm (CMGWO)). In the CMGWO method, we use angular velocity and control torque coding to model attitude maneuver, which increases the difficulty of solving the problem. In order to deal with this problem, the grey wolf algorithm is used for mutation and evolution, so as to reduce the difficulty of solving the problem and shorten the convergence time. Finally, simulation analysis is carried out under different conditions, and the feasibility and effectiveness of the method are verified by numerical simulation.


2022 ◽  
Vol 2022 ◽  
pp. 1-22
Author(s):  
Xiaoyan Gu ◽  
Feng He ◽  
Rongwei Wang ◽  
Liang Chen

In the unmanned aerial vehicle (UAV) swarm combat system, multiple UAVs’ collaborative operations can solve the bottleneck of the limited capability of a single UAV when they carry out complicated missions in complex combat scenarios. As one of the critical technologies of UAV collaborative operation, the mobility model is the basic infrastructure that plays an important role for UAV networking, routing, and task scheduling, especially in high dynamic and real-time scenarios. Focused on real-time guarantee and complex mission cooperative execution, a multilevel reference node mobility model based on the reference node strategy, namely, the ML-RNGM model, is proposed. In this model, the task decomposition and task correlation of UAV cluster execution are realized by using the multilayer task scheduling model. Based on the gravity model of spatial interaction and the correlation between tasks, the reference node selection algorithm is proposed to select the appropriate reference node in the process of node movement. This model can improve the real-time performance of individual tasks and the overall mission group carried out by UAVs. Meanwhile, this model can enhance the connectivity between UAVs when they are performing the same mission group. Finally, OMNeT++ is used to simulate the ML-RNGM model with three experiments, including the different number of nodes and clusters. Within the three experiments, the ML-RNGM model is compared with the random class mobility model, the reference class mobility model, and the associated class mobility model for the network connectivity rate, the average end-to-end delay, and the overhead caused by algorithms. The experimental results show that the ML-RNGM model achieves an obvious improvement in network connectivity and real-time performance for missions and tasks.


2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Zhao-yang Li ◽  
Yue-hong Dai ◽  
Jun-yao Wang ◽  
Peng Tang

To eliminate the influence of spacesuits’ joint resistant torque on the operation of astronauts, an active spacesuit scheme based on the joint-assisted exoskeleton technology is proposed. Firstly, we develop a prototype of the upper limb exoskeleton robot and theoretically analyse the prototype to match astronauts’ motion behavior. Then, the Jiles-Atherton model is adopted to describe the hysteretic characteristic of joint resistant torque. Considering the parameter identification effects in the Jiles-Atherton model and the local optimum problem of the basic PSO (particle swarm optimization) algorithm, a SA- (simulated annealing-) PSO algorithm is proposed to identify the Jiles-Atherton model parameters. Compared with the modified PSO algorithm, the convergence rate of the designed SA-PSO algorithm is advanced by 6.25% and 20.29%, and the fitting accuracy is improved by 14.45% and 46.5% for upper limb joint model. Simulation results show that the identified J-A model can show good agreements with the measured experimental data and well predict the unknown joint resistance torque.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Wenhui Ma ◽  
Xiaogeng Liang ◽  
Yangwang Fang ◽  
Tianbo Deng ◽  
Wenxing Fu

In order to overcome the drawbacks of the convergence time boundary dependent on tuning parameters in existing finite/fixed-time cooperative guidance law, this paper presents a three-dimensional prescribed-time pinning group cooperative guidance scheme that ensures multiple unpowered missiles to intercept multiple stationary targets. Firstly, combining a prescribed-time scaling function with pinning group consensus theory, the prescribed-time consensus-based cooperative guidance law is proposed. Secondly, the prescribed-time convergence of the proposed pinning group consensus-based cooperative guidance law proves that the convergence can be achieved at a specified time, regardless of initial conditions and parameters. Furthermore, the design steps including two stages of the proposed guidance law are given for engineering application. Extensive simulations are carried out in three cases to verify the properties. Simulation results show the effectiveness and superiority of the proposed prescribed-time consensus-based cooperative guidance scheme.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Guohui Zhang ◽  
Xinhong Li ◽  
Gangxuan Hu ◽  
Zhibin Zhang ◽  
Jiping An ◽  
...  

Satellite mission planning is the basis and top-level work of space missions and the beginning of each space mission. Therefore, the scientific research of satellite mission planning is very important. By analyzing the existing research results, we can know that the research on task planning mainly focuses on three aspects: research objects, established model, and solution algorithm. Starting from these three aspects vertically and then horizontally, this paper comprehensively discusses the theoretical basis, application, and advantages and disadvantages of related technologies in the research literature in recent years. Finally, based on the research on satellite mission planning, this paper puts forward its own views on the future development direction and research focus.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Lihan Li ◽  
Xin Li ◽  
Jiang Qin ◽  
Silong Zhang ◽  
Wen Bao

In order to extend the cooling capacity of thermal protection in various advanced propulsion systems, dimple as an effective heat transfer enhancement device with low-pressure loss has been proposed in regenerative cooling channels of a scramjet. In this paper, numerical simulation is conducted to investigate the effect of the dimple depth-diameter ratio on the flow and heat transfer characteristics of supercritical hydrocarbon fuel inside the cooling channel. The thermal performance factor is adopted to evaluate the local synthetically heat transfer. The results show that increasing the dimple depth-diameter ratio h / d p can significantly reduce wall temperature and enhance the heat transfer inside the cooling channel but simultaneously increase pressure loss. The reason is that when h / d p is rising, the recirculation zones inside dimples would be enlarged and the reattachment point is moving downstream, which enlarge both the high Nu area at rear edge of dimple and the low Nu area in dimple front. In addition, when fluid temperature is nearer the fluid pseudocritical temperature, local acceleration caused by dramatic fluid property change would reduce the increment of heat transfer and also reduce pressure loss. In this study, the optimal depth-diameter ratio of dimple in regenerative cooling channel of hydrocarbon fueled is 0.2.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Huiqin Li ◽  
Yanling Li ◽  
Chuan He ◽  
Jianwei Zhan ◽  
Hui Zhang

In this paper, a cognitive electronic jamming decision-making method based on improved Q -learning is proposed to improve the efficiency of radar jamming decision-making. First, the method adopts the simulated annealing (SA) algorithm’s Metropolis criterion to enhance the exploration strategy, balancing the contradictory relationship between exploration and utilization in the algorithm to avoid falling into local optima. At the same time, the idea of stochastic gradient descent with warm restarts (SGDR) is introduced to improve the learning rate of the algorithm, which reduces the oscillation and improves convergence speed at the later stage of the algorithm iteration. Then, a cognitive electronic jamming decision-making model is constructed, and the improved Q -learning algorithm’s specific steps are given. The simulation experiment takes a multifunctional radar as an example to analyze the influence of exploration strategy and learning rate on decision-making performance. The results reveal that compared with the traditional Q -learning algorithm, the improved Q -learning algorithm proposed in this paper can fully explore and efficiently utilize and converge the results to a better solution at a faster speed. The number of iterations can be reduced to more than 50%, which proves the feasibility and effectiveness of the method applied to cognitive electronic jamming decision-making.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Baolai Wang ◽  
Shengang Li ◽  
Xianzhong Gao ◽  
Tao Xie

With the development of unmanned aerial vehicle (UAV) technology, UAV swarm confrontation has attracted many researchers’ attention. However, the situation faced by the UAV swarm has substantial uncertainty and dynamic variability. The state space and action space increase exponentially with the number of UAVs, so that autonomous decision-making becomes a difficult problem in the confrontation environment. In this paper, a multiagent reinforcement learning method with macro action and human expertise is proposed for autonomous decision-making of UAVs. In the proposed approach, UAV swarm is modeled as a large multiagent system (MAS) with an individual UAV as an agent, and the sequential decision-making problem in swarm confrontation is modeled as a Markov decision process. Agents in the proposed method are trained based on the macro actions, where sparse and delayed rewards, large state space, and action space are effectively overcome. The key to the success of this method is the generation of the macro actions that allow the high-level policy to find a near-optimal solution. In this paper, we further leverage human expertise to design a set of good macro actions. Extensive empirical experiments in our constructed swarm confrontation environment show that our method performs better than the other algorithms.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Libing Hou ◽  
Jihong Zhu ◽  
Minchi Kuang ◽  
Heng Shi

To solve the problem regarding the impact angle of the missile, this paper proposes a novel guidance law, which can control the missile to hit the target at the desired angle. The key of the guidance law is selecting a moving point on the collision line as the virtual target, and the tactical requirements can be fulfilled by the missile directly pursuing the virtual target. The Lyapunov stable theory is used to prove the convergence of the proposed guidance law. The guidance command is generated by a PID controller to make the missile towards the virtual target. The proposed guidance law makes the lateral acceleration of the missile converge to zero, which leads the angle of attack to zero, and it theoretically guarantees the flight path angle equals the attitude angle. Numerical simulations demonstrate this impact angle control guidance law is very accurate and robust. Regardless of whether the initial heading error is large or small, the missile which employs the proposed guidance law can always hit the target from the preset direction and the guidance process is smooth.


Sign in / Sign up

Export Citation Format

Share Document