scholarly journals The subnormal structure of some classes of coluble groups

1972 ◽  
Vol 13 (3) ◽  
pp. 365-377 ◽  
Author(s):  
D. McDougall

Finite groups in which normality is transitive have been studied by Best and Taussky, [1], Gaschütz, [3], and Zacher [16]. Infinite soluble groups in which normality is transitive have been studied by Robinson in [9]. A subgroup H of a group G is subnormal in G if H can be connected to G by a chain of r subgroups, in which each is normal in its successor, where r is a non-negative integer. The least such r is called the subnormal index of H in G (or the defect of H in G). Then groups in which normality is transitive are precisely those in which every subnormal subgroup has subnormal index at most one. Thus the structure of soluble groups in which every subnormal subgroup has subnormal index at most n (such a group is said to have bounded subnormal indices) has been dealt with by Robinson in [9] for the case where n is one. However Theorem D of [12] states that a soluble group of derived length n can be embedded in a soluble group in which the subnormal indices are at most n. Therefore we must impose further conditions on the groups if we hope to obtain any worthwhile results for the above problem with n greater than one.

Author(s):  
John Cossey

AbstractIn 1980, McCaughan and Stonehewer showed that a finite soluble group in which every subnormal subgroup has defect at most two has derived length at most nine and Fitting length at most five, and gave an example of derived length five and Fitting length four. In 1984 Casolo showed that derived length five and Fitting length four are best possible bounds.In this paper we show that for groups of odd order the bounds can be improved. A group of odd order with every subnormal subgroup of defect at most two has derived and Fitting length at most three, and these bounds are best possible.


1990 ◽  
Vol 33 (1) ◽  
pp. 1-10 ◽  
Author(s):  
C. M. Campbell ◽  
E. F. Robertson ◽  
R. M. Thomas

In this paper, we investigate a class of 2-generator 2-relator groups G(n) related to the Fibonacci groups F(2,n), each of the groups in this new class also being defined by a single parameter n, though here n can take negative, as well as positive, values. If n is odd, we show that G(n) is a finite soluble group of derived length 2 (if n is coprime to 3) or 3 (otherwise), and order |2n(n + 2)gnf(n, 3)|, where fn is the Fibonacci number defined by f0=0,f1=1,fn+2=fn+fn+1 and gn is the Lucas number defined by g0 = 2, g1 = 1, gn+2 = gn + gn+1 for n≧0. On the other hand, if n is even then, with three exceptions, namely the cases n = 2,4 or –4, G(n) is infinite; the groups G(2), G(4) and G(–4) have orders 16, 240 and 80 respectively.


1966 ◽  
Vol 62 (3) ◽  
pp. 339-346 ◽  
Author(s):  
T. O. Hawkes

Introduction. Hall ((3), (4)) introduced the concept of a Sylow system and its normalizer into the theory of finite soluble groups. In (4) he showed that system normalizers may be characterized as those subgroups D of G minimal subject to the existence of a chain of subgroups from D up to G in which each subgroup is maximal and non-normal in the next; he also showed that a system normalizer covers all the central chief factors and avoids all the eccentric chief factors of G (for definitions of covering and avoidance, and an account of their elementary properties), the reader is referred to Taunt ((5)). This note arises out of an investigation into the question to what extent this covering/ avoidance property characterizes system normalizers; it provides a partial answer by means of two elementary counter-examples given in section 3 which seem to indicate that the property ceases to characterize system normalizers as soon as the ‘non-commutativity’ of the group is increased beyond a certain threshold. For the sake of completeness we include proofs in Theorems 1 and 2 of generalizations of two known results communicated to me by Dr Taunt and which as far as we know have not been published elsewhere. Theorem 1 shows the covering/avoidance property to be characteristic for the class of soluble groups with self-normalizing system normalizers introduced by Carter in (1), while Theorem 2 shows the same is true for A -groups (soluble groups with Abelian Sylow subgroups investigated by Taunt in (5)).


1969 ◽  
Vol 10 (1-2) ◽  
pp. 241-250 ◽  
Author(s):  
H. Lausch

The theory of formations of soluble groups, developed by Gaschütz [4], Carter and Hawkes[1], provides fairly general methods for investigating canonical full conjugate sets of subgroups in finite, soluble groups. Those methods, however, cannot be applied to the class of all finite groups, since strong use was made of the Theorem of Galois on primitive soluble groups. Nevertheless, there is a possiblity to extend the results of the above mentioned papers to the case of Π-soluble groups as defined by Čunihin [2]. A finite group G is called Π-soluble, if, for a given set it of primes, the indices of a composition series of G are either primes belonging to It or they are not divisible by any prime of Π In this paper, we shall frequently use the following result of Čunihin [2]: Ift is a non-empty set of primes, Π′ its complement in the set of all primes, and G is a Π-soluble group, then there always exist Hall Π-subgroups and Hall ′-subgroups, constituting single conjugate sets of subgroups of G respectively, each It-subgroup of G contained in a Hall Π-subgroup of G where each ′-subgroup of G is contained in a Hall Π′-subgroup of G. All groups considered in this paper are assumed to be finite and Π-soluble. A Hall Π-subgroup of a group G will be denoted by G.


2010 ◽  
Vol 12 (02) ◽  
pp. 207-221 ◽  
Author(s):  
A. BALLESTER-BOLINCHES ◽  
JOHN COSSEY ◽  
X. SOLER-ESCRIVÀ

The structure and embedding of subgroups permuting with the system normalizers of a finite soluble group are studied in the paper. It is also proved that the class of all finite soluble groups in which every subnormal subgroup permutes with the Sylow subgroups is properly contained in the class of all soluble groups whose subnormal subgroups permute with the system normalizers while this latter is properly contained in the class of all supersoluble groups.


1991 ◽  
Vol 34 (1) ◽  
pp. 67-73 ◽  
Author(s):  
Grzegorz Gromadzki

AbstractLet G be a soluble group of derived length 3. We show in this paper that if G acts as an automorphism group on a compact Riemann surface of genus g ≠ 3,5,6,10 then it has at most 24(g — 1) elements. Moreover, given a positive integer n we show the existence of a Riemann surface of genus g = n4 + 1 that admits such a group of automorphisms of order 24(g — 1), whilst a surface of specified genus can admit such a group of automorphisms of order 48(g — 1), 40(g — 1), 30(g — 1) and 36(g — 1) respectively.


2014 ◽  
Vol 22 (3) ◽  
pp. 137-146
Author(s):  
Izabela Agata Malinowska

AbstractY. Li gave a characterization of the class of finite soluble groups in which every subnormal subgroup is normal by means of NE-subgroups: a subgroup H of a group G is called an NE-subgroup of G if NG(H) ∩ HG = H. We obtain a new characterization of these groups related to the local Wielandt subgroup. We also give characterizations of the classes of finite soluble groups in which every subnormal subgroup is permutable or Sylow permutable in terms of NE-subgroups.


2009 ◽  
Vol 51 (1) ◽  
pp. 49-54 ◽  
Author(s):  
E. I. KHUKHRO

AbstractThe c-dimension of a group is the maximum length of a chain of nested centralizers. It is proved that a periodic locally soluble group of finite c-dimension k is soluble of derived length bounded in terms of k, and the rank of its quotient by the Hirsch–Plotkin radical is bounded in terms of k. Corollary: a pseudo-(finite soluble) group of finite c-dimension k is soluble of derived length bounded in terms of k.


2021 ◽  
Vol 58 (2) ◽  
pp. 147-156
Author(s):  
Qingjun Kong ◽  
Xiuyun Guo

We introduce a new subgroup embedding property in a finite group called s∗-semipermutability. Suppose that G is a finite group and H is a subgroup of G. H is said to be s∗-semipermutable in G if there exists a subnormal subgroup K of G such that G = HK and H ∩ K is s-semipermutable in G. We fix in every non-cyclic Sylow subgroup P of G some subgroup D satisfying 1 < |D| < |P | and study the structure of G under the assumption that every subgroup H of P with |H | = |D| is s∗-semipermutable in G. Some recent results are generalized and unified.


2012 ◽  
Vol 11 (04) ◽  
pp. 1250064
Author(s):  
CHANGWEN LI

A subgroup H of a group G is called Φ-s-supplemented in G if there exists a subnormal subgroup K of G such that G = HK and H ∩ K ≤ Φ (H), where Φ(H) is the Frattini subgroup of H. We investigate the influence of Φ-s-supplemented subgroups on the p-nilpotency, p-supersolvability and supersolvability of finite groups.


Sign in / Sign up

Export Citation Format

Share Document