scholarly journals Logic programming approaches for routing fault-free and maximally parallel wavelength-routed optical networks-on-chip (Application paper)

2017 ◽  
Vol 17 (5-6) ◽  
pp. 800-818 ◽  
Author(s):  
MARCO GAVANELLI ◽  
MADDALENA NONATO ◽  
ANDREA PEANO ◽  
DAVIDE BERTOZZI

AbstractOne promising trend in digital system integration consists of boosting on-chip communication performance by means of silicon photonics, thus materializing the so-called Optical Networks-on-Chip. Among them, wavelength routing can be used to route a signal to destination by univocally associating a routing path to the wavelength of the optical carrier. Such wavelengths should be chosen so to minimize interferences among optical channels and to avoid routing faults. As a result, physical parameter selection of such networks requires the solution of complex constrained optimization problems. In previous work, published in the proceedings of the International Conference on Computer-Aided Design, we proposed and solved the problem of computing the maximum parallelism obtainable in the communication between any two endpoints while avoiding misrouting of optical signals. The underlying technology, only quickly mentioned in that paper, is Answer Set Programming. In this work, we detail the Answer Set Programming approach we used to solve such problem.Another important design issue is to select the wavelengths of optical carriers such that they are spread across the available spectrum, in order to reduce the likelihood that, due to imperfections in the manufacturing process, unintended routing faults arise. We show how to address such problem in Constraint Logic Programming on Finite Domains.

2017 ◽  
Vol 17 (4) ◽  
pp. 634-683
Author(s):  
TIEP LE ◽  
TRAN CAO SON ◽  
ENRICO PONTELLI ◽  
WILLIAM YEOH

AbstractThis paper explores the use ofAnswer Set Programming (ASP)in solvingDistributed Constraint Optimization Problems (DCOPs). The paper provides the following novel contributions: (1) it shows how one can formulate DCOPs as logic programs; (2) it introduces ASP-DPOP, the first DCOP algorithm that is based on logic programming; (3) it experimentally shows that ASP-DPOP can be up to two orders of magnitude faster than DPOP (its imperative programming counterpart) as well as solve some problems that DPOP fails to solve, due to memory limitations; and (4) it demonstrates the applicability of ASP in a wide array of multi-agent problems currently modeled as DCOPs.


Micromachines ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 54
Author(s):  
Yan-Li Zheng ◽  
Ting-Ting Song ◽  
Jun-Xiong Chai ◽  
Xiao-Ping Yang ◽  
Meng-Meng Yu ◽  
...  

The photoelectric hybrid network has been proposed to achieve the ultrahigh bandwidth, lower delay, and less power consumption for chip multiprocessor (CMP) systems. However, a large number of optical elements used in optical networks-on-chip (ONoCs) generate high transmission loss which will influence network performance severely and increase power consumption. In this paper, the Dijkstra algorithm is adopted to realize adaptive routing with minimum transmission loss of link and reduce the output power of the link transmitter in mesh-based ONoCs. The numerical simulation results demonstrate that the transmission loss of a link in optimized power control based on the Dijkstra algorithm could be maximally reduced compared with traditional power control based on the dimensional routing algorithm. Additionally, it has a greater advantage in saving the average output power of optical transmitter compared to the adaptive power control in previous studies, while the network size expands. With the aid of simulation software OPNET, the network performance simulations in an optimized network revealed that the end-to-end (ETE) latency and throughput are not vastly reduced in regard to a traditional network. Hence, the optimized power control proposed in this paper can greatly reduce the power consumption of s network without having a big impact on network performance.


2016 ◽  
Vol 34 (15) ◽  
pp. 3550-3562 ◽  
Author(s):  
Yiyuan Xie ◽  
Tingting Song ◽  
Zhendong Zhang ◽  
Chao He ◽  
Jiachao Li ◽  
...  

2013 ◽  
Vol 21 (10) ◽  
pp. 1823-1836 ◽  
Author(s):  
Yiyuan Xie ◽  
Mahdi Nikdast ◽  
Jiang Xu ◽  
Xiaowen Wu ◽  
Wei Zhang ◽  
...  

2021 ◽  
Author(s):  
Zhidan Zheng ◽  
Mengchu Li ◽  
Tsun-Ming Tseng ◽  
Ulf Schlichtmann

Author(s):  
Tobias Kaminski ◽  
Thomas Eiter ◽  
Katsumi Inoue

Meta-Interpretive Learning (MIL) is a recent approach for Inductive Logic Programming (ILP) implemented in Prolog. Alternatively, MIL-problems can be solved by using Answer Set Programming (ASP), which may result in performance gains due to efficient conflict propagation. However, a straightforward MIL-encoding results in a huge size of the ground program and search space. To address these challenges, we encode MIL in the HEX-extension of ASP, which mitigates grounding issues, and we develop novel pruning techniques.


Sign in / Sign up

Export Citation Format

Share Document