AUTOMORPHIC LEFSCHETZ PROPERTIES FOR NONCOMPACT ARITHMETIC MANIFOLDS

Author(s):  
Arvind N. Nair ◽  
Ankit Rai

Abstract We prove the injectivity of Oda-type restriction maps for the cohomology of noncompact congruence quotients of symmetric spaces. This includes results for restriction between (1) congruence real hyperbolic manifolds, (2) congruence complex hyperbolic manifolds, and (3) orthogonal Shimura varieties. These results generalize results for compact congruence quotients by Bergeron and Clozel [Quelques conséquences des travaux d’Arthur pour le spectre et la topologie des variétés hyperboliques, Invent. Math.192 (2013), 505–532] and Venkataramana [Cohomology of compact locally symmetric spaces, Compos. Math.125 (2001), 221–253]. The proofs combine techniques of mixed Hodge theory and methods involving automorphic forms.

2018 ◽  
Vol 30 (5) ◽  
pp. 1065-1077 ◽  
Author(s):  
Jan Frahm ◽  
Feng Su

AbstractWe prove upper bounds for geodesic periods of automorphic forms over general rank one locally symmetric spaces. Such periods are integrals of automorphic forms restricted to special totally geodesic cycles of the ambient manifold and twisted with automorphic forms on the cycles. The upper bounds are in terms of the Laplace eigenvalues of the two automorphic forms, and they generalize previous results for real hyperbolic manifolds to the context of all rank one locally symmetric spaces.


2018 ◽  
Vol 70 (2) ◽  
pp. 675-687
Author(s):  
Benjamin Linowitz

Abstract Two number fields are said to be Brauer equivalent if there is an isomorphism between their Brauer groups that commutes with restriction. In this paper, we prove a variety of number theoretic results about Brauer equivalent number fields (for example, they must have the same signature). These results are then applied to the geometry of certain arithmetic locally symmetric spaces. As an example, we construct incommensurable arithmetic locally symmetric spaces containing exactly the same set of proper immersed totally geodesic surfaces.


2011 ◽  
Vol 151 (3) ◽  
pp. 421-440 ◽  
Author(s):  
JOACHIM SCHWERMER ◽  
CHRISTOPH WALDNER

AbstractWe study the cohomology of compact locally symmetric spaces attached to arithmetically defined subgroups of the real Lie group G = SU*(2n). Our focus is on constructing totally geodesic cycles which originate with reductive subgroups in G. We prove that these cycles, also called geometric cycles, are non-bounding. Thus this geometric construction yields non-vanishing (co)homology classes.In view of the interpretation of these cohomology groups in terms of automorphic forms, the existence of non-vanishing geometric cycles implies the existence of certain automorphic forms. In the case at hand, we substantiate this close relation between geometry and automorphic theory by discussing the classification of irreducible unitary representations of G with non-zero cohomology in some detail. This permits a comparison between geometric constructions and automorphic forms.


2020 ◽  
Vol 156 (6) ◽  
pp. 1152-1230 ◽  
Author(s):  
Ana Caraiani ◽  
Daniel R. Gulotta ◽  
Chi-Yun Hsu ◽  
Christian Johansson ◽  
Lucia Mocz ◽  
...  

We show that the compactly supported cohomology of certain $\text{U}(n,n)$- or $\text{Sp}(2n)$-Shimura varieties with $\unicode[STIX]{x1D6E4}_{1}(p^{\infty })$-level vanishes above the middle degree. The only assumption is that we work over a CM field $F$ in which the prime $p$ splits completely. We also give an application to Galois representations for torsion in the cohomology of the locally symmetric spaces for $\text{GL}_{n}/F$. More precisely, we use the vanishing result for Shimura varieties to eliminate the nilpotent ideal in the construction of these Galois representations. This strengthens recent results of Scholze [On torsion in the cohomology of locally symmetric varieties, Ann. of Math. (2) 182 (2015), 945–1066; MR 3418533] and Newton–Thorne [Torsion Galois representations over CM fields and Hecke algebras in the derived category, Forum Math. Sigma 4 (2016), e21; MR 3528275].


2010 ◽  
Vol 258 (4) ◽  
pp. 1121-1139 ◽  
Author(s):  
Lizhen Ji ◽  
Andreas Weber

Sign in / Sign up

Export Citation Format

Share Document