ambient manifold
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 5)

H-INDEX

4
(FIVE YEARS 0)

2021 ◽  
Vol 29 (6) ◽  
pp. 863-868
Author(s):  
Danila Shubin ◽  
◽  

The purpose of this study is to establish the topological properties of three-dimensional manifolds which admit Morse – Smale flows without fixed points (non-singular or NMS-flows) and give examples of such manifolds that are not lens spaces. Despite the fact that it is known that any such manifold is a union of circular handles, their topology can be investigated additionally and refined in the case of a small number of orbits. For example, in the case of a flow with two non-twisted (having a tubular neighborhood homeomorphic to a solid torus) orbits, the topology of such manifolds is established exactly: any ambient manifold of an NMS-flow with two orbits is a lens space. Previously, it was believed that all prime manifolds admitting NMS-flows with at most three non-twisted orbits have the same topology. Methods. In this paper, we consider suspensions over Morse – Smale diffeomorphisms with three periodic orbits. These suspensions, in turn, are NMS-flows with three periodic trajectories. Universal coverings of the ambient manifolds of these flows and lens spaces are considered. Results. In this paper, we present a countable set of pairwise distinct simple 3-manifolds admitting NMS-flows with exactly three non-twisted orbits. Conclusion. From the results of this paper it follows that there is a countable set of pairwise distinct three-dimensional manifolds other than lens spaces, which refutes the previously published result that any simple orientable manifold admitting an NMS-flow with at most three orbits is lens space.



Author(s):  
Mehmet Atc̣eken

AbstractIn the present paper, we study invariant submanifolds of almost Kenmotsu structures whose Riemannian curvature tensor has $$(\kappa ,\mu ,\nu )$$ ( κ , μ , ν ) -nullity distribution. Since the geometry of an invariant submanifold inherits almost all properties of the ambient manifold, we research how the functions $$\kappa ,\mu $$ κ , μ and $$\nu $$ ν behave on the submanifold. In this connection, necessary and sufficient conditions are investigated for an invariant submanifold of an almost Kenmotsu $$(\kappa ,\mu ,\nu )$$ ( κ , μ , ν ) -space to be totally geodesic under some conditions.



2021 ◽  
Vol 21 (2) ◽  
pp. 251-263
Author(s):  
C. Atindogbé ◽  
M. Gutiérrez ◽  
R. Hounnonkpe

Abstract We show how the topological and geometric properties of the family of null hypersurfaces in a Lorentzian manifold are related with the properties of the ambient manifold itself. In particular, we focus in how the presence of global symmetries and curvature conditions restrict the existence of compact null hypersurfaces. We use these results to show the influence on the existence of compact totally umbilic null hypersurfaceswhich are not totally geodesic. Finally we describe the restrictions that they impose in causality theory.



Author(s):  
Joel Fine ◽  
Yannick Herfray

Conformal geodesics are distinguished curves on a conformal manifold, loosely analogous to geodesics of Riemannian geometry. One definition of them is as solutions to a third-order differential equation determined by the conformal structure. There is an alternative description via the tractor calculus. In this article, we give a third description using ideas from holography. A conformal [Formula: see text]-manifold [Formula: see text] can be seen (formally at least) as the asymptotic boundary of a Poincaré–Einstein [Formula: see text]-manifold [Formula: see text]. We show that any curve [Formula: see text] in [Formula: see text] has a uniquely determined extension to a surface [Formula: see text] in [Formula: see text], which we call the ambient surface of [Formula: see text]. This surface meets the boundary [Formula: see text] in right angles along [Formula: see text] and is singled out by the requirement that it be a critical point of renormalized area. The conformal geometry of [Formula: see text] is encoded in the Riemannian geometry of [Formula: see text]. In particular, [Formula: see text] is a conformal geodesic precisely when [Formula: see text] is asymptotically totally geodesic, i.e. its second fundamental form vanishes to one order higher than expected. We also relate this construction to tractors and the ambient metric construction of Fefferman and Graham. In the [Formula: see text]-dimensional ambient manifold, the ambient surface is a graph over the bundle of scales. The tractor calculus then identifies with the usual tensor calculus along this surface. This gives an alternative compact proof of our holographic characterization of conformal geodesics.



Author(s):  
Mustafa Gök ◽  
Erol Kılıç

AbstractIn this paper, we investigate any non-invariant submanifold of a locally decomposable golden Riemannian manifold in the case that the rank of the set of tangent vector fields of the induced structure on the submanifold by the golden structure of the ambient manifold is less than or equal to the codimension of the submanifold.



Author(s):  
Duc-Viet Vu

Abstract We give a natural generalization of the Dinh–Sibony notion of density currents in the setting where the ambient manifold is not necessarily Kähler. As an application, we show that the algebraic entropy of meromorphic self-maps of compact complex surfaces is a finite bi-meromorphic invariant.



2020 ◽  
Vol 2020 (759) ◽  
pp. 161-200 ◽  
Author(s):  
Alberto Abbondandolo ◽  
Thomas O. Rot

AbstractWe classify the homotopy classes of proper Fredholm maps from an infinite-dimensional Hilbert manifold into its model space in terms of a suitable version of framed cobordism. Our construction is an alternative approach to the classification introduced by Elworthy and Tromba in 1970 and does not make use of further structures on the ambient manifold, such as Fredholm structures. In the special case of index zero, we obtain a complete classification involving the Caccioppoli–Smale mod 2 degree and the absolute value of the oriented degree.



Author(s):  
Xu Cheng ◽  
Matheus Vieira ◽  
Detang Zhou

Abstract In this article, we study properly immersed complete noncompact submanifolds in a complete shrinking gradient Ricci soliton with weighted mean curvature vector bounded in norm. We prove that such a submanifold must have polynomial volume growth under some mild assumption on the potential function. On the other hand, if the ambient manifold is of bounded geometry, we prove that such a submanifold must have at least linear volume growth. In particular, we show that a properly immersed complete noncompact hypersurface in the Euclidean space with bounded Gaussian weighted mean curvature must have polynomial volume growth and at least linear volume growth.



Mathematics ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 1209 ◽  
Author(s):  
Mustafa Gök ◽  
Sadık Keleş ◽  
Erol Kılıç

In this paper, we study some characterizations for any submanifold of a golden Riemannian manifold to be semi-invariant in terms of canonical structures on the submanifold, induced by the golden structure of the ambient manifold. Besides, we determine forms of the distributions involved in the characterizations of a semi-invariant submanifold on both its tangent and normal bundles.



Author(s):  
A. E. Kolobyanina ◽  
E. V. Nozdrinova ◽  
O. V. Pochinka

In this paper the authors use modern methods and approaches to present a solution to the problem of the topological classification of circle’s rough transformations in canonical formulation. In the modern theory of dynamical systems such problems are understood as the complete topological classification: finding topological invariants, proving the completeness of the set of invariants found and constructing a standard representative from a given set of topological invariants. Namely, in the first theorem of this paper the type of periodic data of circle’s rough transformations is established. In the second theorem necessary and sufficient conditions of their conjugacy are proved. These conditions mean coincidence of periodic data and rotation numbers. In the third theorem the admissible set of parameters is implemented by a rough transformation of a circle. While proving the theorems, we assume that the results on the local topological classification of hyperbolic periodic points, as well as the results on the global representation of the ambient manifold as a union of invariant manifolds of periodic points, are known.



Sign in / Sign up

Export Citation Format

Share Document