scholarly journals Upper bounds for geodesic periods over rank one locally symmetric spaces

2018 ◽  
Vol 30 (5) ◽  
pp. 1065-1077 ◽  
Author(s):  
Jan Frahm ◽  
Feng Su

AbstractWe prove upper bounds for geodesic periods of automorphic forms over general rank one locally symmetric spaces. Such periods are integrals of automorphic forms restricted to special totally geodesic cycles of the ambient manifold and twisted with automorphic forms on the cycles. The upper bounds are in terms of the Laplace eigenvalues of the two automorphic forms, and they generalize previous results for real hyperbolic manifolds to the context of all rank one locally symmetric spaces.

Author(s):  
Arvind N. Nair ◽  
Ankit Rai

Abstract We prove the injectivity of Oda-type restriction maps for the cohomology of noncompact congruence quotients of symmetric spaces. This includes results for restriction between (1) congruence real hyperbolic manifolds, (2) congruence complex hyperbolic manifolds, and (3) orthogonal Shimura varieties. These results generalize results for compact congruence quotients by Bergeron and Clozel [Quelques conséquences des travaux d’Arthur pour le spectre et la topologie des variétés hyperboliques, Invent. Math.192 (2013), 505–532] and Venkataramana [Cohomology of compact locally symmetric spaces, Compos. Math.125 (2001), 221–253]. The proofs combine techniques of mixed Hodge theory and methods involving automorphic forms.


2019 ◽  
Vol 69 (2) ◽  
pp. 311-320 ◽  
Author(s):  
Muharem Avdispahić ◽  
Dženan Gušić

Abstract We derive approximate formulas for the logarithmic derivative of the Selberg and the Ruelle zeta functions over compact, even-dimensional, locally symmetric spaces of real rank one. The obtained formulas are given in terms of zeta singularities.


2018 ◽  
Vol 29 (01) ◽  
pp. 1850009
Author(s):  
Feng Su

We prove an upper bound for geodesic periods of Maass forms over hyperbolic manifolds. By definition, such periods are integrals of Maass forms restricted to a special geodesic cycle of the ambient manifold, against a Maass form on the cycle. Under certain restrictions, the bound will be uniform.


2014 ◽  
Vol 35 (5) ◽  
pp. 1524-1545 ◽  
Author(s):  
LIZHEN JI ◽  
ANDREAS WEBER

The aim of this paper is to study the spectrum of the$L^{p}$Laplacian and the dynamics of the$L^{p}$heat semigroup on non-compact locally symmetric spaces of higher rank. Our work here generalizes previously obtained results in the setting of locally symmetric spaces of rank one to higher rank spaces. Similarly as in the rank-one case, it turns out that the$L^{p}$heat semigroup on$M$has a certain chaotic behavior if$p\in (1,2)$, whereas for$p\geq 2$such chaotic behavior never occurs.


Mathematics ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1762
Author(s):  
Dženan Gušić

Our basic objects will be compact, even-dimensional, locally symmetric Riemannian manifolds with strictly negative sectional curvature. The goal of the present paper is to investigate the prime geodesic theorems that are associated with this class of spaces. First, following classical Randol’s appraoch in the compact Riemann surface case, we improve the error term in the corresponding result. Second, we reduce the exponent in the newly acquired remainder by using the Gallagher–Koyama techniques. In particular, we improve DeGeorge’s bound Oxη, 2ρ − ρn ≤ η < 2ρ up to Ox2ρ−ρηlogx−1, and reduce the exponent 2ρ − ρn replacing it by 2ρ − ρ4n+14n2+1 outside a set of finite logarithmic measure. As usual, n denotes the dimension of the underlying locally symmetric space, and ρ is the half-sum of the positive roots. The obtained prime geodesic theorem coincides with the best known results proved for compact Riemann surfaces, hyperbolic three-manifolds, and real hyperbolic manifolds with cusps.


Sign in / Sign up

Export Citation Format

Share Document