scholarly journals Understanding our Galaxy: from the center to outskirts

2007 ◽  
Vol 3 (S248) ◽  
pp. 470-473
Author(s):  
Z. Q. Shen ◽  
Y. Xu ◽  
J. L. Han ◽  
X. W. Zheng

AbstractWe describe the efforts to understand our Milky Way Galaxy, from its center to outskirts, including (1) the measurements of the intrinsic size of the galactic center compact radio source Sgr A*; (2) the determination of the distance from the Sun to the Perseus spiral arm; and (3) the revealing of large scale global magnetic fields of the Galaxy.With high-resolution millimeter-VLBI observations, Shen et al. (2005) have measured the intrinsic size of the radio-emitting region of the galactic center compact radio source Sgr A* to be only 1 AU in diameter at 3.5 mm. When combined with the lower limit on the mass of Sgr A*, this provides strong evidence for Sgr A* being a super-massive black hole. Comparison with the intrinsic size detection at 7 mm indicates a frequency-dependent source size, posing a tight constraint on various theoretical models.With VLBI phase referencing observations, Xu et al. (2006) have measured the trigonometric parallax of W3OH in the Perseus spiral arm with an accuracy of 10 μas and also its absolute velocity with an accuracy of 1 km s−1. This demonstrates the capability of probing the structure and kinematics of the Milky Way by determining distances to 12 GHz methanol (CH3OH) masers in star forming regions of distant spiral arms and Milky Way's outskirts.With pulsar dispersion measures and rotation measures, Han et al. (2006) can directly measure the magnetic fields in a very large region of the Galactic disk. The results show that the large-scale magnetic fields are aligned with the spiral arms but reverse their directions many times from the most inner Norma arm to the outer Perseus arm.

2011 ◽  
Vol 28 (2) ◽  
pp. 171-176 ◽  
Author(s):  
P. P. Kronberg ◽  
K. J. Newton-McGee

AbstractWe apply a new, expanded compilation of extragalactic source Faraday rotation measures (RM) to investigate the broad underlying magnetic structure of the Galactic disk at latitudes ∣b∣ ≲15° over all longitudes l, where our total number of RMs is comparable to those in the combined Canadian Galactic Plane Survey (CGPS) at ∣b∣ < 4° and the Southern Galactic Plane (SGPS) ∣b∣<1.5°. We report newly revealed, remarkably coherent patterns of RM at ∣b∣≲15° from l∼270° to ∼90° and RM(l) features of unprecedented clarity that replicate in l with opposite sign on opposite sides of the Galactic center. They confirm a highly patterned bisymmetric field structure toward the inner disc, an axisymmetic pattern toward the outer disc, and a very close coupling between the CGPS/SGPS RMs at ∣b∣≲3° (‘mid-plane’) and our new RMs up to ∣b∣∼15° (‘near-plane’). Our analysis also shows the vertical height of the coherent component of the disc field above the Galactic disc's mid-plane—to be ∼1.5 kpc out to ∼6 kpc from the Sun. This identifies the approximate height of a transition layer to the halo field structure. We find no RM sign change across the plane within ∣b∣∼15° in any longitude range. The prevailing disc field pattern and its striking degree of large-scale ordering confirm that our side of the Milky Way has a very organized underlying magnetic structure, for which the inward spiral pitch angle is 5.5°±1° at all ∣b∣ up to ∼12° in the inner semicircle of Galactic longitudes. It decreases to ∼0° toward the anticentre.


2008 ◽  
Vol 4 (S259) ◽  
pp. 455-466 ◽  
Author(s):  
JinLin Han

AbstractThe magnetic structure in the Galactic disk, the Galactic center and the Galactic halo can be delineated more clearly than ever before. In the Galactic disk, the magnetic structure has been revealed by starlight polarization within 2 or 3 kpc of the Solar vicinity, by the distribution of the Zeeman splitting of OH masers in two or three nearby spiral arms, and by pulsar dispersion measures and rotation measures in nearly half of the disk. The polarized thermal dust emission of clouds at infrared, mm and submm wavelengths and the diffuse synchrotron emission are also related to the large-scale magnetic field in the disk. The rotation measures of extragalactic radio sources at low Galactic latitudes can be modeled by electron distributions and large-scale magnetic fields. The statistical properties of the magnetized interstellar medium at various scales have been studied using rotation measure data and polarization data. In the Galactic center, the non-thermal filaments indicate poloidal fields. There is no consensus on the field strength, maybe mG, maybe tens of μG. The polarized dust emission and much enhanced rotation measures of background radio sources are probably related to toroidal fields. In the Galactic halo, the antisymmetric RM sky reveals large-scale toroidal fields with reversed directions above and below the Galactic plane. Magnetic fields from all parts of our Galaxy are connected to form a global field structure. More observations are needed to explore the untouched regions and delineate how fields in different parts are connected.


1989 ◽  
Vol 136 ◽  
pp. 535-541 ◽  
Author(s):  
Jun-Hui Zhao ◽  
R. D. Ekers ◽  
W. M. Goss ◽  
K. Y. Lo ◽  
Ramesh Narayan

We investigate the long-term flux density variations of the compact radio source Sgr A∗ at the galactic center by combining recent VLA observations with previous Green Bank interferometer data. We present radio flux density light-curves for Sgr A∗ at 20, 11, 6 and 3.7 cm from 1974 to 1987. Long-term variability with a timescale of at least 5 years is seen at 20 cm and there is evidence for more rapid variations at the shorter wavelengths. The variability timescales at 20, 11 and 6 cm fit the λ2 scaling predicted by the theory of refractive scintillation suggesting that the variability could be due to this cause. However, the timescales are relatively short, implying an unusually high velocity in the scattering screen. The modulation index of the variability is large and relatively independent of wavelength.


1989 ◽  
Vol 136 ◽  
pp. 527-534
Author(s):  
K. Y. Lo

We review the current observational status of Sgr A∗, the compact nonthermal radio source at the galactic center. Sgr A∗ is a unique radio source at a unique location of the Galaxy. It is unlike any compact radio source associated with known stellar objects, but it is similar to extragalactic nuclear compact radio sources. The positional offset between Sgr A∗ and IRS16 places little constraint on the nature of the underlying energy source, since IRS16 need not be the core of the central star cluster. Sgr A∗ is still the best candidate for marking the location of a massive collapsed object.


2007 ◽  
Vol 3 (S248) ◽  
pp. 204-205
Author(s):  
J. Li ◽  
Z. Q. Shen ◽  
A. Miyazaki ◽  
M. Miyoshi ◽  
T. Tsutsumi ◽  
...  

AbstractWe have performed monitoring observations of the 3-mm flux density toward the Galactic center compact radio source Sgr A* with the ATCA since 2005 October. It has been found that during several observing epochs Sgr A* was quite active, showing significant intraday variation. Here we report the detection of an IDV in Sgr A* on 2006 August 13, which exhibits a 27% fractional variation in about 2 hrs.


2009 ◽  
Vol 5 (H15) ◽  
pp. 450-451
Author(s):  
JinLin Han

AbstractLarge-scale magnetic fields in the Galactic disk have been revealed by distributions of pulsar rotation measures (RMs) and Zeeman splitting data of masers in star formation regions, which have several reversals in arm and interarm regions. Magnetic fields in the Galactic halo are reflected by the antisymmetric sky distribution of RMs of extragalactic radio sources, which have azimuthal structure with reversed directions below and above the Galactic plane. Large-scale magnetic fields in the Galactic center probably have a poloidal and toroidal structure.


2010 ◽  
Vol 6 (S274) ◽  
pp. 325-332 ◽  
Author(s):  
Rainer Beck

AbstractThe strength and structure of cosmic magnetic fields is best studied by observations of radio continuum emission, its polarization and its Faraday rotation. Fields with a well-ordered spiral structure exist in many types of galaxies. Total field strengths in spiral arms and bars are 20–30 μG and dynamically important. Strong fields in central regions can drive gas inflows towards an active nucleus. The strongest regular fields (10–15 μG) are found in interarm regions, sometimes forming “magnetic spiral arms” between the optical arms. The typical degree of polarization is a few % in spiral arms, but high (up to 50%) in interarm regions. The detailed field structures suggest interaction with gas flows. Faraday rotation measures of the polarization vectors reveals large-scale patterns in several spiral galaxies which are regarded as signatures of large-scale (coherent) fields generated by dynamos. – Polarization observations with the forthcoming large radio telescopes will open a new era in the observation of magnetic fields and should help to understand their origin. Low-frequency radio synchrotron emission traces low-energy cosmic ray electrons which can propagate further away from their origin. LOFAR (30–240 MHz) will allow us to map the structure of weak magnetic fields in the outer regions and halos of galaxies, in galaxy clusters and in the Milky Way. Polarization at higher frequencies (1–10 GHz), to be observed with the EVLA, MeerKAT, APERTIF and the SKA, will trace magnetic fields in the disks and central regions of galaxies in unprecedented detail. All-sky surveys of Faraday rotation measures towards a dense grid of polarized background sources with ASKAP and the SKA are dedicated to measure magnetic fields in distant intervening galaxies and clusters, and will be used to model the overall structure and strength of the magnetic field in the Milky Way.


1989 ◽  
pp. 535-541 ◽  
Author(s):  
Jun-Hui Zhao ◽  
R. D. Ekers ◽  
W. M. Goss ◽  
K. Y. Lo ◽  
Ramesh Narayan

2019 ◽  
Vol 621 ◽  
pp. A127 ◽  
Author(s):  
I. M. Polderman ◽  
M. Haverkorn ◽  
T. R. Jaffe ◽  
M. I. R. Alves

Context. Cosmic rays (CRs) and magnetic fields are dynamically important components in the Galaxy, and their energy densities are comparable to that of the turbulent interstellar gas. The interaction of CRs and Galactic magnetic fields (GMF) produces synchrotron radiation clearly visible in the radio regime. Detailed measurements of synchrotron radiation averaged over the line-of-sight (LOS), so-called synchrotron emissivities, can be used as a tracer of the CR density and GMF strength. Aims. Our aim is to model the synchrotron emissivity in the Milky Way using a three-dimensional dataset instead of LOS-integrated intensity maps on the sky. Methods. Using absorbed HII regions, we measured the synchrotron emissivity over a part of the LOS through the Galaxy, changing from a two-dimensional to a three-dimensional view. Performing these measurements on a large scale is one of the new applications of the window opened by current low-frequency arrays. Using various simple axisymmetric emissivity models and a number of GMF-based emissivity models, we were able to simulate the synchrotron emissivities and compare them to the observed values in the catalog. Results. We present a catalog of low-frequency absorption measurements of HII regions, their distances and electron temperatures, compiled from literature. These data show that the axisymmetric emissivity models are not complex enough, but the GMF-based emissivity models deliver a reasonable fit. These models suggest that the fit can be improved by either an enhanced synchrotron emissivity in the outer reaches of the Milky Way or an emissivity drop near the Galactic center. Conclusions. Current GMF models plus a constant CR density model cannot explain low-frequency absorption measurements, but the fits improved with slight (ad hoc) adaptations. It is clear that more detailed models are needed, but the current results are very promising.


2008 ◽  
Vol 4 (S259) ◽  
pp. 3-14 ◽  
Author(s):  
Rainer Beck

AbstractRadio synchrotron emission, its polarization and its Faraday rotation are powerful tools to study the strength and structure of interstellar magnetic fields. The total intensity traces the strength and distribution of total magnetic fields. Total fields in gas-rich spiral arms and bars of nearby galaxies have strengths of 20–30 μGauss, due to the amplification of turbulent fields, and are dynamically important. In the Milky Way, the total field strength is about 6 μG near the Sun and several 100 μG in filaments near the Galactic Center. – The polarized intensity measures ordered fields with a preferred orientation, which can be regular or anisotropic fields. Ordered fields with spiral structure exist in grand-design, barred, flocculent and even in irregular galaxies. The strongest ordered fields are found in interarm regions, sometimes forming “magnetic spiral arms” between the optical arms. Halo fields are X-shaped, probably due to outflows. – The Faraday rotation of the polarization vectors traces coherent regular fields which have a preferred direction. In some galaxies Faraday rotation reveals large-scale patterns which are signatures of dynamo fields. However, in most galaxies the field has a complicated structure and interacts with local gas flows. In the Milky Way, diffuse polarized radio emission and Faraday rotation of the polarized emission from pulsars and background sources show many small-scale and large-scale magnetic features, but the overall field structure in our Galaxy is still under debate.


Sign in / Sign up

Export Citation Format

Share Document