synchrotron emission
Recently Published Documents


TOTAL DOCUMENTS

440
(FIVE YEARS 74)

H-INDEX

46
(FIVE YEARS 5)

2022 ◽  
Vol 924 (2) ◽  
pp. 76
Author(s):  
Hiddo S. B. Algera ◽  
Jacqueline A. Hodge ◽  
Dominik A. Riechers ◽  
Sarah K. Leslie ◽  
Ian Smail ◽  
...  

Abstract Radio free–free emission is considered to be one of the most reliable tracers of star formation in galaxies. However, as it constitutes the faintest part of the radio spectrum—being roughly an order of magnitude less luminous than radio synchrotron emission at the GHz frequencies typically targeted in radio surveys—the usage of free–free emission as a star formation rate tracer has mostly remained limited to the local universe. Here, we perform a multifrequency radio stacking analysis using deep Karl G. Jansky Very Large Array observations at 1.4, 3, 5, 10, and 34 GHz in the COSMOS and GOODS-North fields to probe free–free emission in typical galaxies at the peak of cosmic star formation. We find that z ∼ 0.5–3 star-forming galaxies exhibit radio emission at rest-frame frequencies of ∼65–90 GHz that is ∼1.5–2 times fainter than would be expected from a simple combination of free–free and synchrotron emission, as in the prototypical starburst galaxy M82. We interpret this as a deficit in high-frequency synchrotron emission, while the level of free–free emission is as expected from M82. We additionally provide the first constraints on the cosmic star formation history using free–free emission at 0.5 ≲ z ≲ 3, which are in good agreement with more established tracers at high redshift. In the future, deep multifrequency radio surveys will be crucial in order to accurately determine the shape of the radio spectrum of faint star-forming galaxies, and to further establish radio free–free emission as a tracer of high-redshift star formation.


2021 ◽  
Vol 922 (2) ◽  
pp. 210
Author(s):  
G. V. Panopoulou ◽  
C. Dickinson ◽  
A. C. S. Readhead ◽  
T. J. Pearson ◽  
M. W. Peel

Abstract Galactic synchrotron emission exhibits large angular scale features known as radio spurs and loops. Determining the physical size of these structures is important for understanding the local interstellar structure and for modeling the Galactic magnetic field. However, the distance to these structures is either under debate or entirely unknown. We revisit a classical method of finding the location of radio spurs by comparing optical polarization angles with those of synchrotron emission as a function of distance. We consider three tracers of the magnetic field: stellar polarization, polarized synchrotron radio emission, and polarized thermal dust emission. We employ archival measurements of optical starlight polarization and Gaia distances and construct a new map of polarized synchrotron emission from WMAP and Planck data. We confirm that synchrotron, dust emission, and stellar polarization angles all show a statistically significant alignment at high Galactic latitude. We obtain distance limits to three regions toward Loop I of 112 ± 17 pc, 135 ± 20 pc, and <105 pc. Our results strongly suggest that the polarized synchrotron emission toward the North Polar Spur at b > 30° is local. This is consistent with the conclusions of earlier work based on stellar polarization and extinction, but in stark contrast with the Galactic center origin recently revisited on the basis of X-ray data. We also obtain a distance measurement toward part of Loop IV (180 ± 15 pc) and find evidence that its synchrotron emission arises from chance overlap of structures located at different distances. Future optical polarization surveys will allow the expansion of this analysis to other radio spurs.


2021 ◽  
Vol 257 (2) ◽  
pp. 49
Author(s):  
Laura Chomiuk ◽  
Justin D. Linford ◽  
Elias Aydi ◽  
Keith W. Bannister ◽  
Miriam I. Krauss ◽  
...  

Abstract We present radio observations (1–40 GHz) for 36 classical novae, representing data from over five decades compiled from the literature, telescope archives, and our own programs. Our targets display a striking diversity in their optical parameters (e.g., spanning optical fading timescales, t 2 = 1–263 days), and we find a similar diversity in the radio light curves. Using a brightness temperature analysis, we find that radio emission from novae is a mixture of thermal and synchrotron emission, with nonthermal emission observed at earlier times. We identify high brightness temperature emission (T B > 5 × 104 K) as an indication of synchrotron emission in at least nine (25%) of the novae. We find a class of synchrotron-dominated novae with mildly evolved companions, exemplified by V5589 Sgr and V392 Per, that appear to be a bridge between classical novae with dwarf companions and symbiotic binaries with giant companions. Four of the novae in our sample have two distinct radio maxima (the first dominated by synchrotron and the later by thermal emission), and in four cases the early synchrotron peak is temporally coincident with a dramatic dip in the optical light curve, hinting at a common site for particle acceleration and dust formation. We publish the light curves in a machine-readable table and encourage the use of these data by the broader community in multiwavelength studies and modeling efforts.


2021 ◽  
Vol 923 (1) ◽  
pp. L14
Author(s):  
Ben Margalit ◽  
Eliot Quataert

Abstract Numerical models of collisionless shocks robustly predict an electron distribution composed of both thermal and nonthermal electrons. Here, we explore in detail the effect of thermal electrons on the emergent synchrotron emission from subrelativistic shocks. We present a complete “thermal + nonthermal” synchrotron model and derive properties of the resulting spectrum and light curves. Using these results, we delineate the relative importance of thermal and nonthermal electrons for subrelativistic shock-powered synchrotron transients. We find that thermal electrons are naturally expected to contribute significantly to the peak emission if the shock velocity is ≳0.2c, but would be mostly undetectable in nonrelativistic shocks. This helps explain the dichotomy between typical radio supernovae and the emerging class of “AT2018cow-like” events. The signpost of thermal electron synchrotron emission is a steep optically-thin spectral index and a ν 2 optically-thick spectrum. These spectral features are also predicted to correlate with a steep postpeak light-curve decline rate, broadly consistent with observed AT2018cow-like events. We expect that thermal electrons may be observable in other contexts where mildly relativistic shocks are present and briefly estimate this effect for gamma-ray burst afterglows and binary–neutron-star mergers. Our model can be used to fit spectra and light curves of events and accounts for both thermal and nonthermal electron populations with no additional physical degrees of freedom.


Author(s):  
Maria Werhahn ◽  
Christoph Pfrommer ◽  
Philipp Girichidis

Abstract An extinction-free estimator of the star-formation rate (SFR) of galaxies is critical for understanding the high-redshift universe. To this end, the nearly linear, tight correlation of far-infrared (FIR) and radio luminosity of star-forming galaxies is widely used. While the FIR is linked to massive star formation, which also generates shock-accelerated cosmic ray (CR) electrons and radio synchrotron emission, a detailed understanding of the underlying physics is still lacking. Hence, we perform three-dimensional magneto-hydrodynamical (MHD) simulations of isolated galaxies over a broad range of halo masses and SFRs using the moving-mesh code Arepo, and evolve the CR proton energy density self-consistently. In post-processing, we calculate the steady-state spectra of primary, shock-accelerated and secondary CR electrons, which result from hadronic CR proton interactions with the interstellar medium. The resulting total radio luminosities correlate with the FIR luminosities as observed and are dominated by primary CR electrons if we account for anisotropic CR diffusion. The increasing contribution of secondary emission up to 30 per cent in starbursts is compensated by the larger bremsstrahlung and Coulomb losses. CR electrons are in the calorimetric limit and lose most of their energy through inverse Compton interactions with star-light and cosmic microwave background (CMB) photons while less energy is converted to synchrotron emission. This implies steep steady-state synchrotron spectra in starbursts. Interestingly, we find that thermal free–free emission flattens the total radio spectra at high radio frequencies and reconciles calorimetric theory with observations while free–free absorption explains the observed low-frequency flattening towards the central regions of starbursts.


Galaxies ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 62
Author(s):  
Aritra Basu ◽  
Sharanya Sur

Polarized synchrotron emission from the radio halos of diffuse intracluster medium (ICM) in galaxy clusters are yet to be observed. To investigate the expected polarization in the ICM, we use high resolution (1 kpc) magnetohydrodynamic simulations of fluctuation dynamos, which produces intermittent magnetic field structures, for varying scales of turbulent driving (lf) to generate synthetic observations of the polarized emission. We focus on how the inferred diffuse polarized emission for different lf is affected due to smoothing by a finite telescope resolution. The mean fractional polarization ⟨p⟩ vary as ⟨p⟩∝lf1/2 with ⟨p⟩>20% for lf≳60 kpc, at frequencies ν>4GHz. Faraday depolarization at ν<3 GHz leads to deviation from this relation, and in combination with beam depolarization, filamentary polarized structures are completely erased, reducing ⟨p⟩ to below 5% level at ν≲1 GHz. Smoothing on scales up to 30 kpc reduces ⟨p⟩ above 4 GHz by at most a factor of 2 compared to that expected at 1 kpc resolution of the simulations, especially for lf≳100 kpc, while at ν<3 GHz, ⟨p⟩ is reduced by a factor of more than 5 for lf≳100 kpc, and by more than 10 for lf≲100 kpc. Our results suggest that observational estimates of, or constrain on, ⟨p⟩ at ν≳4 GHz could be used as an indicator of the turbulent driving scale in the ICM.


2021 ◽  
Vol 28 (8) ◽  
pp. 082510
Author(s):  
Ž. Popović ◽  
E. M. Hollmann ◽  
D. del-Castillo-Negrete ◽  
I. Bykov ◽  
R. A. Moyer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document