central star
Recently Published Documents


TOTAL DOCUMENTS

809
(FIVE YEARS 125)

H-INDEX

32
(FIVE YEARS 7)

2022 ◽  
Vol 6 (1) ◽  
pp. 6
Author(s):  
Lynne A. Hillenbrand ◽  
Antonio C. Rodriguez

Abstract Disks around young stellar objects (YSOs) consist of material that thermally emits the energy provided by a combination of passive heating from the central star, and active, viscous heating due to mass accretion. FU Ori stars are YSOs with substantially enhanced accretion rates in their inner disk regions. As a disk transitions from standard low-state, to FU Ori-like high-state accretion, the outburst manifests through photometric brightening over a broad range of wavelengths. We present results for the expected amplitudes of the brightening between ∼4000 Å and 8 μm—the wavelength range where FU Ori type outburst events are most commonly detected. Our model consists of an optically thick passive + active steady-state accretion disk with low and high accretion states.


2021 ◽  
Vol 923 (1) ◽  
pp. 10
Author(s):  
Jason P. Aufdenberg ◽  
Joseph M. Hammill

Abstract The large, faint Hα emission surrounding the early B-star binary Spica has been used to constrain the total hydrogen recombination rate of the nebula and indirectly probe the Lyman continuum luminosity of the primary star. Early analysis suggested that a stellar atmosphere model, consistent with Spica A’s spectral type, has a Lyman continuum luminosity about two times lower than required to account for the measured Hα surface brightness within the nebula. To more consistently model both the stellar and nebular emission, we have used a model atmosphere for Spica A that includes the effects of gravity darkening as input to photoionization models to produce synthetic Hα surface brightness distributions for comparison to data from the Southern Hα Sky Survey Atlas. This paper presents a method for the computation of projected surface brightness profiles from 1D volume emissivity models and constrains both stellar and nebular parameters. A mean effective temperature for Spica A of ≃24,800 K is sufficient to match both the observed absolute spectrophotometry, from the far-UV to the near-IR, and radial Hα surface brightness distributions. Model hydrogen densities increase with the distance from the star, more steeply and linearly toward the southeast. The northwest matter-bounded portion of the nebula is predicted to leak ∼17% of Lyman continuum photons. Model H ii region column densities are consistent with archival observations along the line of sight.


2021 ◽  
Vol 923 (2) ◽  
pp. 134
Author(s):  
Miriam Fritscher ◽  
Jens Teiser

Abstract The coagulation of micrometer-sized particles marks the beginning of planet formation. For silicates a comprehensive picture already exists, which describes under which conditions growth can take place and which barriers must be overcome. With increasing distance to the central star volatiles freeze out and the collision dynamics is governed by the properties of the frozen volatiles. We present a novel experiment facility to analyze collisions of CO2 agglomerates consisting of micrometer-sized particles with agglomerate sizes up to 100 μm. Experiments are conducted at temperatures around 100 K with collision velocities up to 3.4 m s−1. Below impact velocities of around 0.1 m s−1 sticking is observed and at collision velocities of 1 m s−1 fragmentation also starts to occur. The experiments show that agglomerates of CO2 ice behave like silicate agglomerates with a comparable grain size distribution. Models developed to describe the collision dynamics of silicate dust can be applied to CO2 ice. This holds for the coefficient of restitution as well as for the threshold conditions for the transitions between sticking, bouncing, or fragmentation.


2021 ◽  
Vol 923 (1) ◽  
pp. 6
Author(s):  
Gaoxiang Jin ◽  
Y. Sophia Dai ◽  
Hsi-An Pan ◽  
Lihwai Lin ◽  
Cheng Li ◽  
...  

Abstract The role of active galactic nuclei (AGNs) during galaxy interactions and how they influence the star formation in the system are still under debate. We use a sample of 1156 galaxies in galaxy pairs or mergers (hereafter “pairs”) from the MaNGA survey. This pair sample is selected by the velocity offset, projected separation, and morphology, and is further classified into four cases along the merger sequence based on morphological signatures. We then identify a total of 61 (5.5%) AGNs in pairs based on the emission-line diagnostics. No evolution of the AGN fraction is found, either along the merger sequence or compared to isolated galaxies (5.0%). We observe a higher fraction of passive galaxies in galaxy pairs, especially in the pre-merging cases, and associate the higher fraction to their environmental dependence. The isolated AGN and AGNs in pairs show similar distributions in their global stellar mass, star-formation rate (SFR), and central [O iii] surface brightness. AGNs in pairs show radial profiles of increasing specific SFR and declining Dn4000 from center to outskirts, and no significant difference from the isolated AGNs. This is clearly different from star-forming galaxies (SFGs) in our pair sample, which show enhanced central star formation, as reported before. AGNs in pairs have lower Balmer decrements at outer regions, possibly indicating less dust attenuation. Our findings suggest that AGNs are likely follow an inside-out quenching and the merger impact on the star formation in AGNs is less prominent than in SFGs.


2021 ◽  
Vol 923 (1) ◽  
pp. 123
Author(s):  
Yanqin Wu ◽  
Yoram Lithwick

Abstract The temperature in most parts of a protoplanetary disk is determined by irradiation from the central star. Numerical experiments of Watanabe and Lin suggested that such disks, also called “passive disks,” suffer from a thermal instability. Here we use analytical and numerical tools to elucidate the nature of this instability. We find that it is related to the flaring of the optical surface, the layer at which starlight is intercepted by the disk. Whenever a disk annulus is perturbed thermally and acquires a larger scale height, disk flaring becomes steeper in the inner part and flatter in the outer part. Starlight now shines more overhead for the inner part and so can penetrate into deeper layers; conversely, it is absorbed more shallowly in the outer part. These geometric changes allow the annulus to intercept more starlight, and the perturbation grows. We call this the irradiation instability. It requires only ingredients known to exist in realistic disks and operates best in parts that are both optically thick and geometrically thin (inside 30 au, but can extend to further reaches when, e.g., dust settling is considered). An unstable disk develops traveling thermal waves that reach order unity in amplitude. In thermal radiation, such a disk should appear as a series of bright rings interleaved with dark shadowed gaps, while in scattered light it resembles a moving staircase. Depending on the gas and dust responses, this instability could lead to a wide range of consequences, such as ALMA rings and gaps, dust traps, vertical circulation, vortices, and turbulence.


2021 ◽  
Vol 922 (2) ◽  
pp. 148
Author(s):  
A. Granada ◽  
C. E. Jones ◽  
T. A. A. Sigut

Abstract Using hydrodynamic principles we investigate the nature of the disk viscosity following the parameterization by Shakura & Sunyaev adopted for the viscous decretion model in classical Be stars. We consider a radial viscosity distribution including a constant value, a radially variable α assuming a power-law density distribution, and isothermal disks, for a late-B central star. We also extend our analysis by determining a self-consistent temperature disk distribution to model the late-type Be star 1 Delphini, which is thought to have a nonvariable, stable disk as evidenced by Hα emission profiles that have remained relatively unchanged for decades. Using standard angular momentum loss rates given by Granada et al., we find values of α of approximately 0.3. Adopting lower values of angular momentum loss rates, i.e., smaller mass loss rates, leads to smaller values of α. The values for α vary smoothly over the Hα emitting region and exhibit the biggest variations nearest the central star within about five stellar radii for the late-type, stable Be stars.


2021 ◽  
Vol 922 (1) ◽  
pp. 16
Author(s):  
Hiroshi Kobayashi ◽  
Hidekazu Tanaka

Abstract Gas-giant planets, such as Jupiter, Saturn, and massive exoplanets, were formed via the gas accretion onto the solid cores, each with a mass of roughly 10 Earth masses. However, rapid radial migration due to disk–planet interaction prevents the formation of such massive cores via planetesimal accretion. Comparably rapid core growth via pebble accretion requires very massive protoplanetary disks because most pebbles fall into the central star. Although planetesimal formation, planetary migration, and gas-giant core formation have been studied with a lot of effort, the full evolution path from dust to planets is still uncertain. Here we report the result of full simulations for collisional evolution from dust to planets in a whole disk. Dust growth with realistic porosity allows the formation of icy planetesimals in the inner disk (≲10 au), while pebbles formed in the outer disk drift to the inner disk and there grow to planetesimals. The growth of those pebbles to planetesimals suppresses their radial drift and supplies small planetesimals sustainably in the vicinity of cores. This enables rapid formation of sufficiently massive planetary cores within 0.2–0.4 million years, prior to the planetary migration. Our models shows the first gas giants form at 2–7 au in rather common protoplanetary disks, in agreement with the exoplanet and solar systems.


Author(s):  
А.В. Тутуков ◽  
А.В. Федорова

Обнаружение планетной системы K2-290 A с двумя копланарными планетами, которые обращаются в направлении, обратном вращению центральной звезды, ставит задачу поиска адекватного сценария возникновения таких систем. В данной статье представленные нами ранее сценарии образования планетных систем пересматриваются для оценки возможности формирования в их рамках планет с орбитальным вращением, обратным вращению их центральных звезд. Оценки показывают, что аккреция холодного газа гигантских молекулярных облаков старыми звездами солнечной массы, движущимися в этих облаках с низкой относительной скоростью менее ∼ 1 км/с - это наиболее вероятный сценарий возникновения таких планетных систем. С другой стороны, обратное вращение только одной из нескольких планет системы может быть результатом взаимодействия близких массивных планет на неустойчивых орбитах. Detection of planetary system K2-290 A with two coplanar planets, which rotate in the direction opposite to the rotation of the central star, poses the problem of finding an adequate scenario for the emergence of such systems. In this article, the scenarios for the formation of planetary systems are revised to assess the possibility of forming within their framework planets with orbital rotation opposite to the rotation of their central stars. Estimates show that the accretion of cold gas from giant molecular clouds (GMOs) by old solar-mass stars moving in GMOs with a relative speed less than ∼ 1 km/s - this is the most probable scenario for the emergence of such planetary systems. On the other hand, the opposite rotation of only one of the several planets of the system can be the result of interaction of nearby massive planets in unstable orbits.


Author(s):  
I. Gonzalez-Santamaria ◽  
M. Manteiga ◽  
A. Manchado ◽  
A. Ulla ◽  
C. Dafonte ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document