stellar objects
Recently Published Documents


TOTAL DOCUMENTS

1648
(FIVE YEARS 206)

H-INDEX

84
(FIVE YEARS 8)

2022 ◽  
Vol 6 (1) ◽  
pp. 6
Author(s):  
Lynne A. Hillenbrand ◽  
Antonio C. Rodriguez

Abstract Disks around young stellar objects (YSOs) consist of material that thermally emits the energy provided by a combination of passive heating from the central star, and active, viscous heating due to mass accretion. FU Ori stars are YSOs with substantially enhanced accretion rates in their inner disk regions. As a disk transitions from standard low-state, to FU Ori-like high-state accretion, the outburst manifests through photometric brightening over a broad range of wavelengths. We present results for the expected amplitudes of the brightening between ∼4000 Å and 8 μm—the wavelength range where FU Ori type outburst events are most commonly detected. Our model consists of an optically thick passive + active steady-state accretion disk with low and high accretion states.


2022 ◽  
Vol 258 (1) ◽  
pp. 19
Author(s):  
Shi-Min Song ◽  
Xi Chen ◽  
Zhi-Qiang Shen ◽  
Bin Li ◽  
Kai Yang ◽  
...  

Abstract We report a new survey of the 12.2 GHz Class II methanol masers toward a sample of 367 sources with the 6.7 GHz methanol masers conducted with the Shanghai 65 m Tianma Radio Telescope. This sample has been previously made with observations of the radio continuum emission of UC H ii regions by the VLA. A total of 176 sources were detected with the 12.2 GHz methanol maser, with a detection rate of 48%, including 8 new detections. A lower detection rate (<10%) was determined toward the sources in the Galactic longitude ranges of 60°–180°, revealing that the physical environments from those sources in the Local arm or the tails of Galactic arms do not easily excite the 12.2 GHz masers. In addition, two detections of highly excited-state OH masers at the 13.4 GHz transition were made, one of which is a new detection. Compared to previous surveys, one-third of the detected 12.2 GHz masers show considerable flux variations, implying the possible changes of their physical environments associated with variable radiation fields from their host high-mass young stellar objects. A positive log–log correlation is found between the luminosities of the 6.7 and 12.2 GHz masers in our observed sample, suggesting that both the transition masers have similar excitation conditions. The statistical analysis for the relationships between the methanol maser luminosity and UC H ii region spatial size indicates that the maser luminosities of both the 6.7 and 12.2 GHz transitions have a decreasing trend with the spatial sizes of the associated UC H ii regions, indicating that the Class II methanol masers might fade away with the H ii region evolution.


2022 ◽  
Vol 82 (1) ◽  
Author(s):  
Jay Solanki ◽  
Jackson Levi Said

AbstractIn this paper, we develop a new class of analytical solutions describing anisotropic stellar structures of observed neutron stars using modified f(T) gravity. We use the off-diagonal tetrad that is best suitable for studying spherically symmetric objects in f(T) gravity. We develop exact solutions in the quadratic model of f(T) gravity by introducing physically reliable metric potentials that can describe a wide range of astrophysical systems. We then apply the model to investigate the stellar structures of four observed compact stars, 4U 1538-52, J0437-4715, J0030+0451, and 4U 1820-30. We calculate the values of model parameters for the stellar objects under examination in this paper. Comprehensive graphical analysis shows that the model describing anisotropic stellar structures is physically acceptable, causal, and stable. The model inherently exhibits the quadratic equation of state that can be utilized to investigate the material composition and stellar structures of the observed compact stars.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2433
Author(s):  
Evgeni Semkov ◽  
Sunay Ibryamov ◽  
Stoyanka Peneva

At the time of stellar evolution, young stellar objects go through processes of increased activity and instability. Star formation takes place in several stages during which the star accumulates enough mass to initiate thermonuclear reactions in the nucleus. A significant percentage of the mass of Sun-like stars accumulates during periods of increased accretion known as FUor outbursts. Since we know only about two dozen stars of this type, the study of each new object is very important for our knowledge. In this paper, we present data from photometric monitoring on a FUor object V2493 Cyg discovered in 2010. Our data were obtained in the optical region with BVRI Johnson–Cousins set of filters during the period from November 2016 to February 2021. The results of our observations show that during this period no significant changes in the brightness of the star were registered. We only detect variations with a small amplitude around the maximum brightness value. Thus, since 2013 V2493 Cyg remains at its maximum brightness, without a decrease in brightness. Such photometric behavior is not typical of other stars from FUor type. Usually, the light curves of FUors are asymmetrical, with a very rapid rise and gradual decline of the brightness. V2493 Cyg remains unique in this respect with a very rapid rise in brightness and prolonged retention in maximum light. Our period analysis made for the interval February 2013–February 2021 reveals a well-defined period of 914 ± 10 days. Such periodicity can be explained by dust structures remaining from star formation in orbit around the star.


2021 ◽  
Vol 5 (12) ◽  
pp. 282
Author(s):  
Siu-Hei Cheung ◽  
V. Ashley Villar ◽  
Ho-Sang Chan ◽  
Shirley Ho

Abstract Using the second data release from the Zwicky Transient Facility (ZTF), Chen et al. created a ZTF Catalog of Periodic Variable Stars (ZTF CPVS) of 781,602 periodic variables stars (PVSs) with 11 class labels. Here, we provide a new classification model of PVSs in the ZTF CPVS using a convolutional variational autoencoder and hierarchical random forest. We cross-match the sky-coordinate of PVSs in the ZTF CPVS with those presented in the SIMBAD catalog. We identify non-stellar objects that are not previously classified, including extragalactic objects such as Quasi-Stellar Objects, Active Galactic Nuclei, supernovae and planetary nebulae. We then create a new labeled training set with 13 classes in two levels. We obtain a reasonable level of completeness (≳90%) for certain classes of PVSs, although we have poorer completeness in other classes (∼40% in some cases). Our new labels for the ZTF CPVS are available via Zenodo.


2021 ◽  
pp. 14-30
Author(s):  
Raymond T. Pierrehumbert

‘Creation revealed’ examines key observations on planetary systems. Astronomers at first could probe the Universe only through the medium of visible light. In the early 1600s, the invention of the telescope allowed the Universe to be observed in much greater detail. With the discovery of ‘heat rays’, the seeds of infrared astronomy were planted. Meanwhile, throughout the course of the nineteenth century, one of the grandest unifications in physics was accomplished. It was discovered that the forces of electricity and magnetism were in fact different aspects of the same phenomenon: electromagnetism. Other important topics include blackbody radiation; infrared observations of young stellar objects; and the Atacama Large Millimeter/Submillimeter Array (ALMA).


2021 ◽  
Author(s):  
◽  
Jeremy Moss

<p>While spectroscopy is the standard method of measuring the redshift of luminous objects, it is a time-intensive technique, requiring, in some cases, hours of telescope time for a single source. Additionally, spectroscopy favours brighter objects, and therefore introduces an intrinsic bias towards luminous or closer sources. A simple method of estimating the redshift through photometry would prove invaluable to forthcoming surveys on the next generation of large radio telescopes, as well as alleviating the inherent bias towards the most optically bright sources. While there is a well-established correlation between the near-infrared K-band magnitude and redshift for galaxies, we find that the K-z relation breaks down for samples dominated by quasi-stellar objects (QSOs).  Current methods of estimating photometric redshift rely either on template spectra, which requires a high number of infrared photometry points, or computationally intensive machine learning methods.  Using photometric data from the Sloan Digital Sky Survey (SDSS) we investigate the relationship between combinations of magnitudes of a group of quasars, and their redshift. We find a high correlation between the colour relation (I-W2)/(W3-U) and redshift for a group of broad-line emission sources from the SDSS, and we conclude that this could be a robust estimator of the redshift.</p>


2021 ◽  
Author(s):  
◽  
Jeremy Moss

<p>While spectroscopy is the standard method of measuring the redshift of luminous objects, it is a time-intensive technique, requiring, in some cases, hours of telescope time for a single source. Additionally, spectroscopy favours brighter objects, and therefore introduces an intrinsic bias towards luminous or closer sources. A simple method of estimating the redshift through photometry would prove invaluable to forthcoming surveys on the next generation of large radio telescopes, as well as alleviating the inherent bias towards the most optically bright sources. While there is a well-established correlation between the near-infrared K-band magnitude and redshift for galaxies, we find that the K-z relation breaks down for samples dominated by quasi-stellar objects (QSOs).  Current methods of estimating photometric redshift rely either on template spectra, which requires a high number of infrared photometry points, or computationally intensive machine learning methods.  Using photometric data from the Sloan Digital Sky Survey (SDSS) we investigate the relationship between combinations of magnitudes of a group of quasars, and their redshift. We find a high correlation between the colour relation (I-W2)/(W3-U) and redshift for a group of broad-line emission sources from the SDSS, and we conclude that this could be a robust estimator of the redshift.</p>


Author(s):  
Guillaume Laibe ◽  
Maxime Lombart

Abstract Evolving the size distribution of solid aggregates challenges simulations of young stellar objects. Among other difficulties, generic formulae for stability conditions of explicit solvers provide severe constrains when integrating the coagulation equation for astrophysical objects. Recent numerical experiments have recently reported that these generic conditions may be much too stringent. By analysing the coagulation equation in the Laplace space, we explain why this is indeed the case and provide a novel stability condition which avoids time over-sampling.


2021 ◽  
Vol 923 (1) ◽  
pp. 25
Author(s):  
S. K. Betti ◽  
R. Gutermuth ◽  
S. Offner ◽  
G. Wilson ◽  
A. Sokol ◽  
...  

Abstract We use hydrodynamical simulations of star-forming gas with stellar feedback and sink particles—proxies for young stellar objects (YSOs)—to produce and analyze synthetic 1.1 mm continuum observations at different distances (150–1000 pc) and ages (0.49–1.27 Myr). We characterize how the inferred core properties, including mass, size, and clustering with respect to diffuse natal gas structure, change with distance, cloud evolution, and the presence of YSOs. We find that atmospheric filtering and core segmentation treatments have distance-dependent impacts on the resulting core properties for d < 300 pc and 500 pc, respectively, which dominate over evolutionary differences. Concentrating on synthetic observations at further distances (650–1000 pc), we find a growing separation between the inferred sizes and masses of cores with and without YSOs in the simulations, which is not seen in recent observations of the Monoceros R2 (Mon R2) cloud at 860 pc. We find that the synthetic cores cluster in smaller groups, and that their mass densities are correlated with gas column density over a much narrower range, than those in the Mon R2 observations. Such differences limit the applicability of the evolutionary predictions we report here, but will motivate our future efforts to adapt our synthetic observation and analysis framework to next generation simulations, such as Star Formation in Gaseous Environments (STARFORGE). These predictions and systematic characterizations will help to guide the analysis of cores on the upcoming TolTEC Clouds to Cores Legacy Survey on the Large Millimeter Telescope Alfonso Serrano.


Sign in / Sign up

Export Citation Format

Share Document