scholarly journals The starburst – active galactic nuclei connection on nuclear scales in near by Seyfert galaxies

2013 ◽  
Vol 9 (S304) ◽  
pp. 345-346
Author(s):  
Pilar Esquej

AbstractSeveral works have shown that there is an empirical correlation between the star formation rate and the luminosity of the active galactic nucleus (and thus the black hole accretion rate, ṀBH) of Seyfert galaxies. This suggests a physical relation between the gas forming stars on kpc scales and the gas on sub-pc scales that is feeding the black hole. Simulations predict this relation and also that the correlation should be more prominent on smaller physical scales. We have compiled high angular resolution (0.4–0.8″) mid-infrared spectroscopy obtained with T-ReCS, VISIR, and Michelle of 29 Seyferts. We use the 11.3 μm PAH feature to probe the star formation activity in the inner ~65 pc, and its relation with the ṀBH on these physical scales.

2013 ◽  
Vol 780 (1) ◽  
pp. 86 ◽  
Author(s):  
P. Esquej ◽  
A. Alonso-Herrero ◽  
O. González-Martín ◽  
S. F. Hönig ◽  
A. Hernán-Caballero ◽  
...  

2019 ◽  
Vol 489 (1) ◽  
pp. 802-819 ◽  
Author(s):  
Angelo Ricarte ◽  
Michael Tremmel ◽  
Priyamvada Natarajan ◽  
Thomas Quinn

ABSTRACT We study the link between supermassive black hole growth and the stellar mass assembly of their host galaxies in the state-of-the-art Romulus suite of simulations. The cosmological simulations Romulus25 and RomulusC employ innovative recipes for the seeding, accretion, and dynamics of black holes in the field and cluster environments, respectively. We find that the black hole accretion rate traces the star formation rate among star-forming galaxies. This result holds for stellar masses between 108 and 1012 solar masses, with a very weak dependence on host halo mass or redshift. The inferred relation between accretion rate and star formation rate does not appear to depend on environment, as no difference is seen in the cluster/proto-cluster volume compared to the field. A model including the star formation rate, the black hole-to-stellar mass ratio, and the cold gas fraction can explain about 70 per cent of all variations in the black hole accretion rate among star-forming galaxies. Finally, bearing in mind the limited volume and resolution of these cosmological simulations, we find no evidence for a connection between black hole growth and galaxy mergers, on any time-scale and at any redshift. Black holes and their galaxies assemble in tandem in these simulations, regardless of the larger scale intergalactic environment, suggesting that black hole growth simply follows star formation on galactic scales.


2021 ◽  
Vol 921 (2) ◽  
pp. 170
Author(s):  
Guang Yang ◽  
Vicente Estrada-Carpenter ◽  
Casey Papovich ◽  
Fabio Vito ◽  
Jonelle L. Walsh ◽  
...  

Abstract The cosmic black hole accretion density (BHAD) is critical for our understanding of the formation and evolution of supermassive black holes (BHs). However, at high redshifts (z > 3), X-ray observations report BHADs significantly (∼10 times) lower than those predicted by cosmological simulations. It is therefore paramount to constrain the high-z BHAD using independent methods other than direct X-ray detections. The recently established relation between star formation rate and BH accretion rate among bulge-dominated galaxies provides such a chance, as it enables an estimate of the BHAD from the star formation histories (SFHs) of lower-redshift objects. Using the CANDELS Lyα Emission At Reionization (CLEAR) survey, we model the SFHs for a sample of 108 bulge-dominated galaxies at z = 0.7–1.5, and further estimate the BHAD contributed by their high-z progenitors. The predicted BHAD at z ≈ 4–5 is consistent with the simulation-predicted values, but higher than the X-ray measurements (by ≈3–10 times at z = 4–5). Our result suggests that the current X-ray surveys could be missing many heavily obscured Compton-thick active galactic nuclei (AGNs) at high redshifts. However, this BHAD estimation assumes that the high-z progenitors of our z = 0.7–1.5 sample remain bulge-dominated where star formation is correlated with BH cold-gas accretion. Alternatively, our prediction could signify a stark decline in the fraction of bulges in high-z galaxies (with an associated drop in BH accretion). JWST and Origins will resolve the discrepancy between our predicted BHAD and the X-ray results by constraining Compton-thick AGN and bulge evolution at high redshifts.


2015 ◽  
Vol 452 (1) ◽  
pp. L6-L10 ◽  
Author(s):  
Marta Volonteri ◽  
Pedro R. Capelo ◽  
Hagai Netzer ◽  
Jillian Bellovary ◽  
Massimo Dotti ◽  
...  

2015 ◽  
Vol 449 (2) ◽  
pp. 1470-1485 ◽  
Author(s):  
Marta Volonteri ◽  
Pedro R. Capelo ◽  
Hagai Netzer ◽  
Jillian Bellovary ◽  
Massimo Dotti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document