scholarly journals Do Current X-Ray Observations Capture Most of the Black-hole Accretion at High Redshifts?

2021 ◽  
Vol 921 (2) ◽  
pp. 170
Author(s):  
Guang Yang ◽  
Vicente Estrada-Carpenter ◽  
Casey Papovich ◽  
Fabio Vito ◽  
Jonelle L. Walsh ◽  
...  

Abstract The cosmic black hole accretion density (BHAD) is critical for our understanding of the formation and evolution of supermassive black holes (BHs). However, at high redshifts (z > 3), X-ray observations report BHADs significantly (∼10 times) lower than those predicted by cosmological simulations. It is therefore paramount to constrain the high-z BHAD using independent methods other than direct X-ray detections. The recently established relation between star formation rate and BH accretion rate among bulge-dominated galaxies provides such a chance, as it enables an estimate of the BHAD from the star formation histories (SFHs) of lower-redshift objects. Using the CANDELS Lyα Emission At Reionization (CLEAR) survey, we model the SFHs for a sample of 108 bulge-dominated galaxies at z = 0.7–1.5, and further estimate the BHAD contributed by their high-z progenitors. The predicted BHAD at z ≈ 4–5 is consistent with the simulation-predicted values, but higher than the X-ray measurements (by ≈3–10 times at z = 4–5). Our result suggests that the current X-ray surveys could be missing many heavily obscured Compton-thick active galactic nuclei (AGNs) at high redshifts. However, this BHAD estimation assumes that the high-z progenitors of our z = 0.7–1.5 sample remain bulge-dominated where star formation is correlated with BH cold-gas accretion. Alternatively, our prediction could signify a stark decline in the fraction of bulges in high-z galaxies (with an associated drop in BH accretion). JWST and Origins will resolve the discrepancy between our predicted BHAD and the X-ray results by constraining Compton-thick AGN and bulge evolution at high redshifts.

2019 ◽  
Vol 489 (1) ◽  
pp. 802-819 ◽  
Author(s):  
Angelo Ricarte ◽  
Michael Tremmel ◽  
Priyamvada Natarajan ◽  
Thomas Quinn

ABSTRACT We study the link between supermassive black hole growth and the stellar mass assembly of their host galaxies in the state-of-the-art Romulus suite of simulations. The cosmological simulations Romulus25 and RomulusC employ innovative recipes for the seeding, accretion, and dynamics of black holes in the field and cluster environments, respectively. We find that the black hole accretion rate traces the star formation rate among star-forming galaxies. This result holds for stellar masses between 108 and 1012 solar masses, with a very weak dependence on host halo mass or redshift. The inferred relation between accretion rate and star formation rate does not appear to depend on environment, as no difference is seen in the cluster/proto-cluster volume compared to the field. A model including the star formation rate, the black hole-to-stellar mass ratio, and the cold gas fraction can explain about 70 per cent of all variations in the black hole accretion rate among star-forming galaxies. Finally, bearing in mind the limited volume and resolution of these cosmological simulations, we find no evidence for a connection between black hole growth and galaxy mergers, on any time-scale and at any redshift. Black holes and their galaxies assemble in tandem in these simulations, regardless of the larger scale intergalactic environment, suggesting that black hole growth simply follows star formation on galactic scales.


2020 ◽  
Vol 493 (3) ◽  
pp. 3341-3362 ◽  
Author(s):  
João Calhau ◽  
David Sobral ◽  
Sérgio Santos ◽  
Jorryt Matthee ◽  
Ana Paulino-Afonso ◽  
...  

ABSTRACT Despite recent progress in understanding Ly α emitters (LAEs), relatively little is known regarding their typical black hole activity across cosmic time. Here, we study the X-ray and radio properties of ∼4000 LAEs at 2.2 < $z$ < 6 from the SC4K survey in the COSMOS field. We detect 254 ($6.8{\rm{ per\ cent}} \pm 0.4{\rm{ per\ cent}}$) LAEs individually in the X-rays (S/N > 3) with an average luminosity of $\rm 10^{44.31\pm 0.01}\, erg\, s^{-1}$ and average black hole accretion rate (BHAR) of $\rm 0.72 \pm 0.01$ M⊙ yr−1, consistent with moderate to high accreting active galactic neuclei (AGNs). We detect 120 sources in deep radio data (radio AGN fraction of $3.2{\rm{ per\ cent}} \pm 0.3{\rm{ per\ cent}}$). The global AGN fraction ($\rm 8.6{\rm{ per\ cent}} \pm 0.4{\rm{ per\ cent}}$) rises with Ly α luminosity and declines with increasing redshift. For X-ray-detected LAEs, Ly α luminosities correlate with the BHARs, suggesting that Ly α luminosity becomes a BHAR indicator. Most LAEs ($93.1{\rm{ per\ cent}} \pm 0.6{\rm{ per\ cent}}$) at 2 < $z$ < 6 have no detectable X-ray emission (BHARs < 0.017 M⊙ yr−1). The median star formation rate (SFR) of star-forming LAEs from Ly α and radio luminosities is $7.6^{+6.6}_{-2.8}$ M⊙ yr−1. The black hole to galaxy growth ratio (BHAR/SFR) for LAEs is <0.0022, consistent with typical star-forming galaxies and the local BHAR/SFR relation. We conclude that LAEs at 2 < $z$ < 6 include two different populations: an AGN population, where Ly α luminosity traces BHAR, and another with low SFRs which remain undetected in even the deepest X-ray stacks but is detected in the radio stacks.


2013 ◽  
Vol 9 (S304) ◽  
pp. 345-346
Author(s):  
Pilar Esquej

AbstractSeveral works have shown that there is an empirical correlation between the star formation rate and the luminosity of the active galactic nucleus (and thus the black hole accretion rate, ṀBH) of Seyfert galaxies. This suggests a physical relation between the gas forming stars on kpc scales and the gas on sub-pc scales that is feeding the black hole. Simulations predict this relation and also that the correlation should be more prominent on smaller physical scales. We have compiled high angular resolution (0.4–0.8″) mid-infrared spectroscopy obtained with T-ReCS, VISIR, and Michelle of 29 Seyferts. We use the 11.3 μm PAH feature to probe the star formation activity in the inner ~65 pc, and its relation with the ṀBH on these physical scales.


2015 ◽  
Vol 452 (1) ◽  
pp. L6-L10 ◽  
Author(s):  
Marta Volonteri ◽  
Pedro R. Capelo ◽  
Hagai Netzer ◽  
Jillian Bellovary ◽  
Massimo Dotti ◽  
...  

2020 ◽  
Vol 642 ◽  
pp. A65
Author(s):  
R. Carraro ◽  
G. Rodighiero ◽  
P. Cassata ◽  
M. Brusa ◽  
F. Shankar ◽  
...  

Aims. We study the coevolution between the black hole accretion rate (BHAR) and the star formation rate (SFR) in different phases of galaxy life: main-sequence star-forming galaxies, quiescent galaxies, and starburst galaxies at different cosmic epochs. Methods. We exploited the unique combination of depth and area in the COSMOS field and took advantage of the X-ray data from the Chandra COSMOS-Legacy survey and the extensive multiwavelength ancillary data presented in the COSMOS2015 catalog, including in particular the UVista Ultra-deep observations. These large datasets allowed us to perform an X-ray stacking analysis and combine it with detected sources in a broad redshift interval (0.1 <  z <  3.5) with unprecedented statistics for normal star-forming, quiescent, and starburst galaxies. The X-ray luminosity was used to predict the black holeAR, and a similar stacking analysis on far-infrared Herschel maps was used to measure the corresponding obscured SFR for statistical samples of sources in different redshifts and stellar mass bins. Results. We focus on the evolution of the average SFR-stellar mass (M*) relation and compare it with the BHAR-M* relation. This extends previous works that pointed toward the existence of almost linear correlations in both cases. We find that the ratio between BHAR and SFR does not evolve with redshift, although it depends on stellar mass. For the star-forming populations, this dependence on M* has a logarithmic slope of ∼0.6 and for the starburst sample, the slope is ∼0.4. These slopes are both at odds with quiescent sources, where the dependence remains constant (log(BHAR/SFR) ∼ −3.4). By studying the specific BHAR and specific SFR, we find signs of downsizing for M* and black hole mass (MBH) in galaxies in all evolutionary phases. The increase in black hole mass-doubling timescale was particularly fast for quiescents, whose super-massive black holes grew at very early times, while accretion in star-forming and starburst galaxies continued until more recent times. Conclusions. Our results support the idea that the same physical processes feed and sustain star formation and black hole accretion in star-forming galaxies while the starburst phase plays a lesser role in driving the growth of the supermassive black holes, especially at high redshift. Our integrated estimates of the M* − MBH relation at all redshifts are consistent with independent determinations of the local M* − MBH relation for samples of active galactic nuclei. This adds key evidence that the evolution in the BHAR/SFR is weak and its normalization is relatively lower than that of local dynamical M* − MBH relations.


2015 ◽  
Vol 449 (2) ◽  
pp. 1470-1485 ◽  
Author(s):  
Marta Volonteri ◽  
Pedro R. Capelo ◽  
Hagai Netzer ◽  
Jillian Bellovary ◽  
Massimo Dotti ◽  
...  

2013 ◽  
Vol 773 (1) ◽  
pp. 3 ◽  
Author(s):  
Chien-Ting J. Chen ◽  
Ryan C. Hickox ◽  
Stacey Alberts ◽  
Mark Brodwin ◽  
Christine Jones ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document