scholarly journals Correction to “Functional Characterization of Two PLP-Dependent Enzymes Involved in Capsular Polysaccharide Biosynthesis from Campylobacter jejuni”

Biochemistry ◽  
2021 ◽  
Author(s):  
Alexander S. Riegert ◽  
Tamari Narindoshvili ◽  
Adriana Coricello ◽  
Nigel G. J. Richards ◽  
Frank M. Raushel
2005 ◽  
Vol 389 (1) ◽  
pp. 63-72 ◽  
Author(s):  
Nehmé SAKSOUK ◽  
Ludovic PELOSI ◽  
Pierre COLIN-MOREL ◽  
Manel BOUMEDIENNE ◽  
Patricia L. ABDIAN ◽  
...  

CPS (capsular polysaccharide) is a major virulence factor in Streptococcus pneumoniae. Biosynthesis of CPS RU (repeat unit) proceeds by sequential transfer of sugar residues from the appropriate sugar donor to an activated lipid carrier by committed GTs (glycosyltransferases). While the nucleotide sequence of many cps loci is already known, the real substrate specificity of the hypothetical GTs, as well as the sequence of sugar addition is unclear. In the present paper, we report the biochemical characterization of one α-galactosyltransferase, WciS (Cap8H), a member of GT family 4. This enzyme is implicated in the tetrasaccharide RU biosynthetic pathway of Strep. pneumoniae CPS 8 ([→4)-α-D-Glcp-(1→4)-α-D-Galp-(1→4)-β-D-GlcAp-(1→4)-β-D-Glcp-(1→]n). Expression of WciS–His6 in Escherichia coli BL21 (DE3) strains or BL21 (DE3)/ΔgalU strain resulted in synthesis of a 39 kDa membrane-associated protein identified by N-terminal sequencing and recognized by anti-His6-tag antibody. This protein was capable of adding a galactose residue cellobiuronic acid [β-D-GlcAp-(1→4)-D-Glcp]-pyrophosphate-polyprenol from UDP-Gal. The newly added galactose residue is removed by α-galactosidase, indicating that WciS is a retaining GT. Our results suggest that WciS catalyses the addition of the third sugar residue of the CPS 8 RU. The recombinant WciS–His6 was solubilized and purified as a soluble multimer, opening the way for structural studies.


2009 ◽  
Vol 191 (6) ◽  
pp. 1891-1900 ◽  
Author(s):  
Jinghua Yang ◽  
Mary Ritchey ◽  
Yasuo Yoshida ◽  
C. Allen Bush ◽  
John O. Cisar

ABSTRACT The antigenically related coaggregation receptor polysaccharides (RPS) of Streptococcus oralis strains C104 and SK144 mediate recognition of these bacteria by other members of the dental plaque biofilm community. In the present study, the structure of strain SK144 RPS was established by high resolution NMR spectroscopy as [6Galfβ1-6GalNAcβ1-3Galα1-2ribitol-5-PO4 −-6Galfβ1-3Galβ1]n, thereby indicating that this polysaccharide and the previously characterized RPS of strain C104 are identical, except for the linkage between Gal and ribitol-5-phosphate, which is α1-2 in strain SK144 versus α1-1 in strain C104. Studies to define the molecular basis of RPS structure revealed comparable genes for six putative transferases and a polymerase in the rps loci of these streptococci. Cell surface RPS production was abolished by disrupting the gene for the first transferase of strain C104 with a nonpolar erm cassette. It was restored in the resulting mutant by plasmid-based expression of either wcjG, the corresponding gene of S. pneumoniae for serotype 10A capsular polysaccharide (CPS) biosynthesis or wbaP for the transferase of Salmonella enterica that initiates O-polysaccharide biosynthesis. Thus, WcjG, like WbaP, appears to initiate polysaccharide biosynthesis by transferring galactose-1-phosphate to a lipid carrier. In further studies, the structure of strain C104 RPS was converted to that of strain SK144 by replacing the gene (wefM) for the fourth transferase in the rps locus of strain C104 with the corresponding gene (wcrC) of strain SK144 or Streptococcus pneumoniae serotype 10A. These findings identify genetic markers for the different ribitol-5-phosphate-containing types of RPS present in S. oralis and establish a close relationship between these polysaccharides and serogroup 10 CPSs of S. pneumoniae.


1999 ◽  
Vol 181 (19) ◽  
pp. 6192-6196 ◽  
Author(s):  
Laurie E. Comstock ◽  
Michael J. Coyne ◽  
Arthur O. Tzianabos ◽  
Dennis L. Kasper

ABSTRACT The sequence and analysis of the capsular polysaccharide biosynthesis locus, PS B2, of Bacteroides fragilis 638R are described, and the sequence is compared with that of the PS B1 biosynthesis locus of B. fragilis NCTC 9343. Two genes of the region, wcgD and wcgC, are shown by complementation to encode a UDP-N-acetylglucosamine 2-epimerase and a UDP-N-acetylmannosamine dehydrogenase, respectively.


Sign in / Sign up

Export Citation Format

Share Document