Nanoscopic Dynamics Dictate the Phase Separation Behavior of Intrinsically Disordered Proteins

2021 ◽  
Author(s):  
Katharina Laaß ◽  
Felipe García Quiroz ◽  
Johannes Hunold ◽  
Stefan Roberts ◽  
Ashutosh Chilkoti ◽  
...  
2019 ◽  
Vol 5 (10) ◽  
pp. eaax5177 ◽  
Author(s):  
Felipe Garcia Quiroz ◽  
Nan K. Li ◽  
Stefan Roberts ◽  
Patrick Weber ◽  
Michael Dzuricky ◽  
...  

The phase separation behavior of intrinsically disordered proteins (IDPs) is thought of as analogous to that of polymers that undergo equilibrium lower or upper critical solution temperature (LCST and UCST, respectively) phase transition. This view, however, ignores possible nonequilibrium properties of protein assemblies. Here, by studying IDP polymers (IDPPs) composed of repeat motifs that encode LCST or UCST phase behavior, we discovered that IDPs can access a wide spectrum of nonequilibrium, hysteretic phase behaviors. Experimentally and through simulations, we show that hysteresis in IDPPs is tunable and that it emerges through increasingly stable interchain interactions in the insoluble phase. To explore the utility of hysteretic IDPPs, we engineer self-assembling nanostructures with tunable stability. These findings shine light on the rich phase separation behavior of IDPs and illustrate hysteresis as a design parameter to program nonequilibrium phase behavior in self-assembling materials.


2021 ◽  
Author(s):  
Mike T. Veling ◽  
Dan T. Nguyen ◽  
Nicole N. Thadani ◽  
Michela E. Oster ◽  
Nathan J. Rollins ◽  
...  

ABSTRACTMany organisms can survive extreme conditions and successfully recover to normal life. This extremotolerant behavior has been attributed in part to repetitive, amphipathic, and intrinsically disordered proteins that are upregulated in the protected state. Here, we assemble a library of approximately 300 naturally-occurring and designed extremotolerance-associated proteins to assess their ability to protect human cells from chemically-induced apoptosis. We show that proteins from tardigrades, nematodes, and the Chinese giant salamander are apoptosis protective. Notably, we identify a region of the human ApoE protein with similarity to extremotolerance-associated proteins that also protects against apoptosis. This region mirrors the phase separation behavior seen with such proteins, like the tardigrade protein CAHS2. Moreover, we identify a synthetic protein, DHR81, that shares this combination of elevated phase separation propensity and apoptosis protection. Finally, we demonstrate that driving protective proteins into the condensate state increases apoptosis protection, and highlight the ability for DHR81 condensates to sequester caspase-7. Taken together, this work draws a link between extremotolerance-associated proteins, condensate formation, and human cellular protection.


2020 ◽  
Vol 22 (34) ◽  
pp. 19368-19375 ◽  
Author(s):  
Milan Kumar Hazra ◽  
Yaakov Levy

The charge pattern of intrinsically disordered proteins affects the dynamics and internal diffusion of their condensate formed via liquid–liquid phase separation.


2020 ◽  
Vol 118 (3) ◽  
pp. 60a
Author(s):  
Samrat Mukhopadhyay ◽  
Anupa Majumdar ◽  
Priyanka Dogra ◽  
Shiny Maity ◽  
Ashish Joshi

2020 ◽  
Vol 117 (21) ◽  
pp. 11421-11431 ◽  
Author(s):  
Benjamin S. Schuster ◽  
Gregory L. Dignon ◽  
Wai Shing Tang ◽  
Fleurie M. Kelley ◽  
Aishwarya Kanchi Ranganath ◽  
...  

Phase separation of intrinsically disordered proteins (IDPs) commonly underlies the formation of membraneless organelles, which compartmentalize molecules intracellularly in the absence of a lipid membrane. Identifying the protein sequence features responsible for IDP phase separation is critical for understanding physiological roles and pathological consequences of biomolecular condensation, as well as for harnessing phase separation for applications in bioinspired materials design. To expand our knowledge of sequence determinants of IDP phase separation, we characterized variants of the intrinsically disordered RGG domain from LAF-1, a model protein involved in phase separation and a key component of P granules. Based on a predictive coarse-grained IDP model, we identified a region of the RGG domain that has high contact probability and is highly conserved between species; deletion of this region significantly disrupts phase separation in vitro and in vivo. We determined the effects of charge patterning on phase behavior through sequence shuffling. We designed sequences with significantly increased phase separation propensity by shuffling the wild-type sequence, which contains well-mixed charged residues, to increase charge segregation. This result indicates the natural sequence is under negative selection to moderate this mode of interaction. We measured the contributions of tyrosine and arginine residues to phase separation experimentally through mutagenesis studies and computationally through direct interrogation of different modes of interaction using all-atom simulations. Finally, we show that despite these sequence perturbations, the RGG-derived condensates remain liquid-like. Together, these studies advance our fundamental understanding of key biophysical principles and sequence features important to phase separation.


Sign in / Sign up

Export Citation Format

Share Document