human cells
Recently Published Documents


TOTAL DOCUMENTS

8815
(FIVE YEARS 1330)

H-INDEX

213
(FIVE YEARS 20)

2022 ◽  
Vol 23 (2) ◽  
pp. 821
Author(s):  
Florian Rosier ◽  
Nicolas Fernandez Nuñez ◽  
Magali Torres ◽  
Béatrice Loriod ◽  
Pascal Rihet ◽  
...  

Mortality due to sepsis remains unacceptably high, especially for septic shock patients. Murine models have been used to better understand pathophysiology mechanisms. However, the mouse model is still under debate. Herein we investigated the transcriptional response of mice injected with lipopolysaccharide (LPS) and compared it to either human cells stimulated in vitro with LPS or to the blood cells of septic patients. We identified a molecular signature composed of 2331 genes with an FDR median of 0%. This molecular signature is highly enriched in regulated genes in peritoneal macrophages stimulated with LPS. There is significant enrichment in several inflammatory signaling pathways, and in disease terms, such as pneumonia, sepsis, systemic inflammatory response syndrome, severe sepsis, an inflammatory disorder, immune suppression, and septic shock. A significant overlap between the genes upregulated in mouse and human cells stimulated with LPS has been demonstrated. Finally, genes upregulated in mouse cells stimulated with LPS are enriched in genes upregulated in human cells stimulated in vitro and in septic patients, who are at high risk of death. Our results support the hypothesis of common molecular and cellular mechanisms between mouse and human sepsis.


Biomedicines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 141
Author(s):  
Fabrice Lejeune

Nonsense-mediated mRNA decay (NMD) is both a mechanism for rapidly eliminating mRNAs carrying a premature termination codon and a pathway that regulates many genes. This implies that NMD must be subject to regulation in order to allow, under certain physiological conditions, the expression of genes that are normally repressed by NMD. Therapeutically, it might be interesting to express certain NMD-repressed genes or to allow the synthesis of functional truncated proteins. Developing such approaches will require a good understanding of NMD regulation. This review describes the different levels of this regulation in human cells.


2022 ◽  
Author(s):  
Marion A. L. Picard ◽  
Fiona Leblay ◽  
Cecile Cassan ◽  
Mathilde Decourcelle ◽  
Anouk Willemsen ◽  
...  

Redundancy in the genetic code allows for differences in transcription and/or translation efficiency between mRNA molecules carrying synonymous polymorphisms, with potential phenotypic impact at the molecular and at the organismal level. A combination of neutral and selective processes determines the global genome codon usage preferences, as well as local differences between genes within a genome and between positions along a single gene. The relative contribution of evolutionary forces at shaping codon usage bias in eukaryotes is a matter of debate, especially in mammals. The main riddle remains understanding the sharp contrast between the strong molecular impact of gene expression differences arising from codon usage preferences and the thin evidence for codon usage selection at the organismal level. Here we report a multiscale analysis of the consequences of alternative codon usage on heterologous gene expression in human cells. We generated synonymous versions of the shble antibiotic resistance gene, fused to a fluorescent reporter, and expressed independently them in human HEK293 cells. We analysed: i) mRNA-to-DNA and protein-to-mRNA ratios for each shble version; ii) cellular fluorescence, using flow cytometry, as a proxy for single cell-level construct expression; and iii) real-time cell proliferation in absence or presence of antibiotic, as a proxy for the cellular fitness. Our results show that differences in codon usage preferences in our focal gene strongly impacted the molecular and the cellular phenotype: i) they elicited large differences in mRNA and in protein levels, as well in mRNA-to-protein ratio; ii) they introduced splicing events not predicted by current algorithms; iii) they lead to reproducible phenotypic heterogeneity as different multimodal distributions of cellular fluorescence EGFP; iv) they resulted in a trade-off between burden of heterologous expression and antibiotic resistance. While certain codon usage-related variables monotonically correlated with protein expression, other variables (e.g. CpG content or mRNA folding energy) displayed a bell-like behaviour. We interpret that codon usage preferences strongly shape the molecular and cellular phenotype in human cells through a direct impact on gene expression.


2022 ◽  
Author(s):  
Ty A Bottorff ◽  
Adam P Geballe ◽  
Arvind Rasi Subramaniam

Upstream open reading frames (uORFs) are present in over half of all human mRNAs. uORFs can potently regulate the translation of downstream open reading frames by several mechanisms: siphoning away scanning ribosomes, regulating re-initiation, and allowing interactions between scanning and elongating ribosomes. However, the consequences of these different mechanisms for the regulation of protein expression remain incompletely understood. Here, we performed systematic measurements on the uORF-containing 5′ UTR of the cytomegaloviral UL4 mRNA to test alternative models of uORF-mediated regulation in human cells. We find that a terminal diproline-dependent elongating ribosome stall in the UL4 uORF prevents decreases in main ORF translation when ribosome loading onto the mRNA is reduced. This uORF-mediated buffering is insensitive to the location of the ribosome stall along the uORF. Computational kinetic modeling based on our measurements suggests that scanning ribosomes dissociate rather than queue when they collide with stalled elongating ribosomes within the UL4 uORF. We identify several human uORFs that repress main ORF translation via a similar terminal diproline motif. We propose that ribosome stalls in uORFs provide a general mechanism for buffering against reductions in main ORF translation during stress and developmental transitions.


2022 ◽  
Author(s):  
Joanna Szaleniec ◽  
Agnieszka Gibała ◽  
Joanna Stalińska ◽  
Magdalena Oćwieja ◽  
Paulina Żeliszewska ◽  
...  

Introduction: The significance of the microbiome in chronic rhinosinusitis (CRS) is not clear. Antimicrobials are recommended in acute exacerbations of the disease (AECRS). Increasing rates of antibiotic resistance stimulate research on alternative therapeutic options including silver nanoparticles (AgNPs), sometimes referred to as “colloidal silver”. However, there are concerns regarding the safety of silver administration and the emergence of silver resistance. In this cross-sectional observational study, we assessed the sensitivity of sinonasal pathogens to AgNPs and compared it with the toxicity of AgNPs for nasal epithelial cells. Method: Negatively charged AgNPs (13±5 nm) were obtained with the use of tannic acid. Minimal inhibitory concentrations (MIC) of the AgNPs were determined for pathogens isolated from patients with AECRS. Cytotoxicity was tested on human nasal epithelial cells line in vitro. Results: 48 clinical isolates and 4 reference strains were included in the study (Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, Klebsiella oxytoca, Acinetobacter baumanii, Serratia marcescens, Enterobacter cloacae). The MIC values differed between isolates, even within the same species. All of the strains were sensitive to AgNPs in concentrations nontoxic to human cells during 24 hours exposition. However, 48h exposition to AgNPs increased toxicity to human cells, narrowing their therapeutic window and enabling 19% of pathogens to resist the AgNPs biocidal action. Conclusions: AgNPs can potentially be used in intranasal drugs to treat most episodes of AECRS. Sensitivity testing may be necessary before application. Results of sensitivity testing for reference strains cannot be extrapolated to other strains of the same species.


2022 ◽  
Author(s):  
Nader Alerasool ◽  
He Leng ◽  
Zhen-Yuan Lin ◽  
Anne-Claude Gingras ◽  
Mikko Taipale

2022 ◽  
Vol 2 (1) ◽  
Author(s):  
Gregory B. Lowen ◽  
Joseph P. Vanderburgh ◽  
David Florian ◽  
Taylor Scott ◽  
Julie A. Rhoades Sterling ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document