Trelagliptin Mitigates Macrophage Infiltration by Preventing the Breakdown of the Blood–Brain Barrier in the Brain of Middle Cerebral Artery Occlusion Mice

2021 ◽  
Vol 34 (4) ◽  
pp. 1016-1023
Author(s):  
Li’e Zang ◽  
Bo Yang ◽  
Mingyuan Zhang ◽  
Jingwen Cui ◽  
Xue Ma ◽  
...  
2018 ◽  
Vol 36 (6) ◽  
pp. 377-385 ◽  
Author(s):  
Jiangsong Zhang ◽  
Xianming Lin ◽  
Hui Zhou ◽  
Yuanyuan Chen ◽  
Shuangkai Xiao ◽  
...  

Objective To examine for an opening effect on the blood–brain barrier (BBB) in intact rats and rats with experimental ischaemia-reperfusion (I/R) during the recovery period after various electroacupuncture (EA) treatments with different time courses, and to determine whether there is a time-dependent effect. An additional objective was to determine whether this method could induce the penetration of nerve growth factor (NGF) through the BBB. Methods A middle cerebral artery occlusion (MCAO) model was first established. We chose different stimulation time courses and observed the effects of EA treatment (100 Hz frequency; 2 mA intensity) at GV20 and GV26 on the BBB in rats recovering from MCAO 3 weeks after modelling. The rats were injected with 2% Evans blue (EB) saline. The brain water content was measured using a wet/dry weighing method. The degree of penetration of EB was detected using spectrophotometry and laser confocal microscopy. The rats were then injected with NGF, and the concentration of NGF in the brain tissues was measured using ELISA. Results The increase in the BBB permeability was most notable following the 8 min EA stimulation (P<0.05), which may be advantageous for the targeted delivery of drugs (such as NGF) into the brain. Additionally, this effect did not appear to cause brain oedema (P>0.05) in healthy or MCAO rats. Conclusions EA treatment for a certain stimulation time at GV20 and GV26 in MCAO rats can increase BBB permeability.


2015 ◽  
Vol 36 (6) ◽  
pp. 1143-1154 ◽  
Author(s):  
Ataru Nishimura ◽  
Tetsuro Ago ◽  
Junya Kuroda ◽  
Koichi Arimura ◽  
Masaki Tachibana ◽  
...  

Pericytes are mural cells abundantly present in cerebral microvessels and play important roles, including the formation and maintenance of the blood–brain barrier. Nox4 is a major source of reactive oxygen species in cardiovascular cells and modulate cellular functions, particularly under pathological conditions. In the present study, we found that the expression of Nox4 was markedly induced in microvascular cells, including pericytes, in peri-infarct areas after middle cerebral artery occlusion stroke models in mice. The upregulation of Nox4 was greater in a permanent middle cerebral artery occlusion model compared with an ischemia/reperfusion transient middle cerebral artery occlusion model. We performed permanent middle cerebral artery occlusion on mice with Nox4 overexpression in pericytes (Tg-Nox4). Infarct volume was significantly greater with enhanced reactive oxygen species production and blood–brain barrier breakdown in peri-infarct areas in Tg-Nox4, compared with littermate controls. In cultured brain pericytes, Nox4 was significantly upregulated by hypoxia and was promptly downregulated by reoxygenation. Phosphorylation of NFκB and production of matrix metalloproteinase 9 were significantly increased in both cultured pericytes overexpressing Nox4 and in peri-infarct areas in Tg-Nox4. Collectively, Nox4 is upregulated in pericytes in peri-infarct areas after acute brain ischemia and may enhance blood–brain barrier breakdown through activation of NFκB and matrix metalloproteinase 9, thereby causing enlargement of infarct volume.


Sign in / Sign up

Export Citation Format

Share Document